
Family Learning Talk in AI Literacy Learning Activities 
Duri Long Anthony Teachey Brian Magerko 

Georgia Institute of Technology Georgia Institute of Technology Georgia Institute of Technology 
Atlanta, GA, USA Atlanta, GA, USA Atlanta, GA, USA 
duri@gatech.edu ateachey3@gatech.edu magerko@gatech.edu 

ABSTRACT 
The unique role that AI plays in making decisions that afect hu-
mans creates a need for public understanding of AI. Informal learn-
ing spaces are important contexts for fostering AI literacy, as they 
can reach a broader audience and provide spaces for children and 
parents to learn together. This paper explores 1) what types of 
dialogue familes engage in when learning about AI in an at-home 
learning environment to inform our understanding of 2) how to de-
sign AI literacy activities for informal learning contexts. We present 
an analysis of family dialogue surrounding three AI education activ-
ities and use our fndings to update existing principles for designing 
AI literacy educational interventions. Our fndings indicate that 
embodied interaction, collaboration, and lowering barriers to entry 
were efective at fostering learning talk. Our results also reveal 
emergent areas for future research on how to support parents and 
design visualizations and datasets for AI learning. 

CCS CONCEPTS 
• Social and professional topics → Informal education; • Human-
centered computing → Empirical studies in interaction design; • 
Computing methodologies → Artifcial intelligence. 
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1 INTRODUCTION 
Artifcial intelligence (AI) technologies are currently making deci-
sions for and with humans in a variety of consequential contexts, 
including recidivism [56], hiring [90], newsfeed and search result 
curation [21], entertainment and shopping recommendations [71], 
and military and law enforcement [64, 77]. The integration of AI 
into our day-to-day decision-making processes will only increase 
as new AI technologies are developed for use in our homes, cars, 
governments, social lives, and workplaces. We have already seen 
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how serious the consequences of misunderstanding or failing to 
question/regulate AI’s decisions can be–leading to issues like vi-
ral misinformation [5, 62], biased systems that disproportionately 
impact marginalized communities [9, 12, 14, 60, 88], and serious 
concerns about data privacy [73]. 

The unique role that AI plays in making decisions that afect 
human lives creates a need to foster better public understanding 
of AI systems. We assert that it is critical for people interacting 
with and using AI tools to have “AI literacy”–or a set of competen-
cies that enables individuals to critically evaluate AI technologies, 
communicate and collaborate efectively with AI, and use AI as a 
tool online, at home, and in the workplace [51]. Fostering public AI 
literacy could lead to more productive human-AI communication, 
better human-in-the-loop AI systems that can take advantage of 
AI’s strengths while mitigating its weaknesses, skills that enable 
people to better advocate for themselves on AI-related issues, and 
more informed public debate about the role AI should play in our 
society. 

Informal learning spaces are particularly important contexts for 
fostering AI literacy. Research has shown that much of science 
and technology learning and interest development happens outside 
of formal classroom settings [23], and interventions in informal 
spaces can often reach a broader audience of learners than would 
self-select to attend a formal course [70]. Despite this, most existing 
research on AI education for individuals without computer/data 
science backgrounds has focused on K-12 classroom environments. 

Informal learning contexts have the additional beneft of pro-
viding spaces for family groups to learn together. Children and 
adults both are making sense of AI and its role in their lives, and 
there are many open questions about the personal, societal, and 
ethical implications of AI technologies. Collaborative dialogue and 
multi-generational perspectives are important in helping families 
to make sense of these issues. In addition, providing adults with op-
portunities to learn about AI alongside their children is important, 
as AI education for adults without computing backgrounds is an 
underexplored area. 

This paper explores how to foster learning about AI with family 
groups in informal learning environments. We investigate our frst 
research question– What types of dialogue do family groups engage 
in when making sense of and learning about AI?–in order to inform 
our understanding of our second research question–How can we 
design activities to facilitate family group learning about AI literacy 
competencies in informal learning environments?. We created three 
diferent activities intended to foster learning about AI, informed by 
a set of existing design considerations for AI literacy learning inter-
ventions [51]. We conducted an analysis of family group dialogue 
surrounding the three activities in order to determine whether and 
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how they fostered group learning, and we refect on how our fnd-
ings contribute to a more refned understanding of the AI literacy 
design considerations [51]. 

We found that certain design features–especially using tangible 
and full-body interfaces, supporting collaboration, and lowering 
barriers to entry by designing activities that require no prerequisite 
computing or programming knowledge–were efective at foster-
ing family group engagement and dialogue relevant to AI literacy 
competencies. Our fndings also reveal areas in need of further 
investigation, including how to scafold novice engagement with 
explanatory visualizations, how to curate datasets used in AI learn-
ing activities, and how to best support parents and young learners 
who are engaging as part of a group with AI-related activities. In 
summary, this paper contributes a better understanding of how 
family groups engage in dialogue and learn about AI and uses these 
fndings to refect on, update, and add to existing principles for de-
signing AI literacy educational interventions for informal learning 
environments. 

2 RELATED WORK 

2.1 AI Education 
There has been a recent push in the CHI community and beyond to 
expand opportunities to learn about AI beyond expert audiences. In 
particular, there has been a signifcant efort to develop technologies 
and curricula to teach K-12 audiences about AI. Several groups are 
working to develop curricula and standards for incorporating AI 
in K-12 education [4, 28, 40, 43, 79, 80]. Researchers and designers 
have created a wide variety of new tools to support learning about 
AI, including plugins for popular coding platforms like Scratch and 
MIT App Inventor [2, 10, 17, 82], new tools for teaching specifc 
AI/ML concepts through interactive activities (e.g. [69, 84, 94]), and 
“unplugged” or no-technology-needed paper-based AI education 
activities [45]. 

Much of the current research on how people learn about AI is 
synthesized in a CHI 2020 literature review paper written by the 
frst and third author (Long and Magerko) that outlines a set of 
competencies and design considerations for learning interventions 
intended to foster AI literacy. In this 2020 review, we derive a set of 
competencies as well as design principles for designing AI literacy 
learning interventions based on a review of prior literature related 
to AI education, computing education, human-centered AI, and 
more. The competencies we present are high-level ideas that are 
intended to aid in public understanding of AI–such as recogniz-
ing when technologies use AI, understanding that computers learn 
from data, or understanding some strategies AI uses for decision-
making. The design principles we present include suggestions such 
as designing learning experiences that foster collaboration or em-
bodied interaction, providing support and scafolding for parents, 
and unveiling system components gradually so as not to overwhelm 
learners. In this paper, we use our previously presented competen-
cies and design principles as guidelines for our designs and we 
refect on each of the design principles in the Discussion section 
(section 6). 

Since the AI education feld is in a stage of rapid exploration 
and development, more recent updates to our literature review and 
additional literature reviews on related topics have already been 

published [24, 47, 54, 59, 83, 92]. We refer the interested reader to 
these works for a more thorough review of recent work related to 
AI education. Several papers have expanded on the design consid-
erations in [51] or suggested some additional design considerations 
for AI literacy activities. Zhou et al. suggest incorporating oppor-
tunities for learners to “learn by teaching,” using gamifcation to 
teach about AI concepts, supporting iteration with immediate feed-
back, promoting refection, providing opportunities for teachers 
and parents to learn alongside children, and integrating AI across 
disciplines in other K-12 course curricula [92]. Van Brummelen 
et al. suggest adding several AI-related concepts to Brennan and 
Resnick’s computational thinking framework [11]–including clas-
sifcation, prediction, generation, training/validating/testing, and 
evaluation [81]. Touretzky and Gardner McCune suggest drawing 
on the growing number of browser-based tools (e.g. Cognimates, 
eCraft2Learn, TensorFlow, Teachable Machine) as well as incorpo-
rating paper-based activities like interacting with maps and decision 
trees or doing hand simulations of simplifed ML algorithms [78]. 

Not a lot of existing work has focused on designing AI-related 
activities specifcally for informal learning contexts. Several pa-
pers have explored how adults develop and revise “folk theories” 
about opaque algorithms online [21, 22] and how adults make 
sense of algorithms when provided with explanations [20]. A recent 
poster paper explores how to use a kiosk exhibit to teach about 
AI history in public libraries [85]. Some museums have curated 
AI-related installations–including artifacts, artwork, and interac-
tive demonstrations–into overarching exhibits that explore more 
holistic representations of AI. The Barbican developed AI: More 
than Human [8], which presented the history of AI via artifacts, 
interactive timelines, artwork, and demonstrations. Ars Electronica 
also recently curated Understanding AI [25], which featured several 
installations that aimed to demystify machine learning algorithms. 
Visitors could interactively explore how ML technologies such as 
image recognition, unsupervised learning, and neural networks 
worked. Both of these exhibits have taken a step towards facilitat-
ing AI-related interactive learning experiences. However, there are 
still many aspects of AI that have yet to be explored in an informal 
learning context and there are few existing projects that explicitly 
draw on research or theory on AI education and museum exhibit 
design. 

Our paper departs from a growing body of research in the feld 
that explores how to teach AI/ML through programming platforms 
(e.g. [2, 10, 17, 81, 82]). Most of these projects have been targeted 
at integrating with K-12 classroom contexts or structured summer 
programs. Given our focus on informal learning contexts where 
groups contain visitors of all ages, individuals may have little or no 
prior knowledge of coding, and participants have limited time to 
learn, we focus on high-level AI-related competencies that can be 
quickly communicated to individuals who may not know how to 
program. 

The activities presented in this paper build instead on prior 
work that suggests that embodied interaction can be a particularly 
efective way of concretizing abstract AI concepts for learners [17, 
76] and engaging learners with diverse interests in learning about AI 
[39, 94]. We draw inspiration from “unplugged” CS and AI activities 
that are often well-suited for learners of all ages with a range of 
technical literacy, due to their hands-on, no-technology-needed 
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Table 1: Summary of competencies and design principles for each activity 

Activity Name Competencies Design Principles 
Knowledge Net ways of representing knowledge, strengths and weak-

nesses of AI, role of humans in programming AI, how 
agents make decisions 

embodied interaction, social interaction, explainability, op-
portunities to program or teach AI, leveraging learners’ 
interests, facilitating a low barrier of entry 

Creature Features steps and practices of machine learning, ways of repre-
senting knowledge, how agents make decisions, com-
puters learn from data 

encourage learners to contextualize data, social interaction, 
opportunities to program or teach AI, explainable algo-
rithms 

LuminAI ways of representing knowledge, how agents make de-
cisions, computers learn from data, steps and practices 
of machine learning 

embodied interaction, social interaction, explainability, op-
portunities to program or teach AI, incorporating learner 
interests, engaging with lesser-known forms of AI 

Table 2: Summary of diferences between diferent iterations of the system 

Activity Name Iteration 1 Iteration 2 

Knowledge Net laminated paper gameboard, wooden tiles, photo taken 
with smart phone, some issues with image recognition 

wooden game board, paper tiles, photo taken with Osmo 
device and iPad to improve image recognition and usability 

Creature Features laminated paper gameboard, front/back card design, 
photo taken with smart phone, only a positive dataset 

wooden gameboard, front-only card design, photo taken 
with Osmo device and iPad to improve image recognition, 
positive and negative datasets 

LuminAI - some minor bugs in the system fxed, otherwise the same 
as Iteration 1 

nature [45, 78, 89]. Our work also draws on the body of research 
that explores tangible interfaces as an efective way of engaging 
families in learning together about computer science and other 
topics [31–33]. 

2.2 Assessing Learning at AI Education 
Activities 

Numerous groups have developed AI-related learning interventions 
and assessed them using a variety of means, including collecting 
students’ daily refections and conducting interviews with students 
[41], asking learners to take pre/post tests or complete question-
naires [3, 80] or asking teachers for their impressions of student 
learning [3]. Register and Ko assessed learning about AI concepts 
by asking learners to write self-advocacy letters in response to 
AI-related scenarios [65]. Others have conducted studies to assess 
learner preconceptions of AI [35] and worked with teachers to un-
derstand pedagogical content knowledge necessary for teaching 
machine learning to non-computing majors [76]. All of these studies 
have led to insights into how to best design learning interventions 
to support learning about AI literacy competencies. 

However, traditional assessments can be challenging to use in 
informal learning contexts like museums and at-home learning, due 
to limits on visitor time and low learner motivation to take a “test” 
during a leisure activity [33]. Observational assessment techniques 
such as analysis of “learning talk”–or group dialogue that relates 
to the learning goals of the exhibit or activity–is often a more 
practical and insightful way of assessing learning in informal spaces 
[6, 67]. Insight into how learners engage in dialogue surrounding 
AI literacy activities can also further deepen our understanding of 
social learning about AI. 

There is not a signifcant amount of existing work analyzing par-
ticipant learning talk surrounding AI education activities for non-
expert audiences. The most relevant studies are papers that examine 
the types of questions and conversations that young learners and 
families ask when interacting with AI voice assistants [17, 18, 63]. 
Our prior work has also examined family conversation in a co-
design workshop related to AI education [48]. Our paper adds to 
this body of work by assessing the activities we develop using a 
learning talk analysis and in doing so contributing a study of family 
group learning talk surrounding AI literacy learning activities. 

2.3 Family Learning and Engagement in 
Museums 

Research on family learning in informal learning spaces is also 
relevant to our work. Family group and peer collaboration both en-
courage learning and can facilitate constructive dialogue, parental 
and peer scafolding, and sharing of perspectives [16, 87]. Collab-
oration is particularly important to design for in museums since 
visitors most often come in groups [30]. 

Prior work has explored how family groups engage with tangible 
and embodied interfaces in museums [32]. Embodied experiences in 
museums can aid in understanding concepts like scale and size [57], 
encourage learners to empathize with others via the exertion of 
physical efort [53, 72], and help to connect abstract concepts with 
children’s existing bodily experiences [1, 13, 44, 76]. Tangible inter-
faces are able to evoke cultural forms, or recognized conventions 
and social patterns of activity [31]. For example, a tangible interface 
for computer science education that is puzzle-like will evoke social 
dynamics and interaction patterns that families are already familiar 
with from completing puzzles together. We build of of this prior 
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work to create interfaces that feel familiar to families, even as they 
broach unfamiliar topics. 

Other work has studied family dialogue to explore how to foster 
group inquiry [29], curiosity [66], and sense-making practices [93] 
surrounding museum exhibits. Aspects of our activity design and 
the design of the associated instructional materials build on this 
prior work to foster group inquiry and discussion. 

3 ACTIVITIES 
We analyzed family group dialogue with three diferent activities 
designed to foster learning about AI. These activities were origi-
nally prototyped as exhibits for installation in a science museum, 
and were later adapted for use in at-home learning environments 
due to the COVID-19 pandemic. The three activities focus on com-
municating a variety of AI literacy competencies, ranging from the 
steps and practices of machine learning to understanding knowl-
edge representations. We drew on an array of design principles 
when creating the activities, but especially focused on incorporat-
ing opportunities for tangible or full-body interaction and group 
collaboration (see Section 2.3). 

This section provides a brief description of each activity we de-
veloped and the AI literacy competencies and design considerations 
that they incorporate (Table 1 summarizes the competencies/design 
principles for each activity). The core contribution of this paper 
is the learning talk analysis and refection on AI literacy design 
principles, so we do not go into detail on the design process here, 
but we refer the interested reader to [52] for more information. 

Each of these exhibits was developed iteratively. We conducted 
user studies with family groups in two diferent sessions–the fami-
lies participating in the frst session of studies interacted with an 
earlier prototype of the exhibits than the families participating in 
the second study session. The overarching exhibit design is sum-
marized below, and Table 2 outlines the diferences between the 
two iterations of the exhibit design to contextualize the learning 
talk analysis. 

3.1 Knowledge Net 
Knowledge Net (Figure 1) is an activity in which learners can use 
a tangible interface of wooden tiles and arrows to collaboratively 
build semantic networks (a type of AI knowledge representation 
that contains concepts and relationships between them) about top-
ics of interest to them (e.g. family, animals, music, etc.). Once learn-
ers build their network, they can take a photo of it, upload it to a 
website, and ask questions to an AI chatbot that uses their network 
as its knowledge base (e.g. Learner: What is a cat?, Computer: A 
cat is a mammal). This prototype aims to communicate AI com-
petencies such as ways of representing knowledge, how agents 
learn and make decisions, understanding strengths/weaknesses of 
AI, and recognizing the role that humans play in programming 
and teaching AI [51]. It incorporates AI literacy design principles 
such as embodied interaction, collaboration, explainable algorithms, 
opportunities for individuals to program or teach AI (in this case, 
the focus was not on programming but on ‘teaching’ the AI by 
creating a network of information), and facilitating a low barrier 
of entry [51]. We encouraged learners engage in a discussion after 
their interaction about the types of relationships they were able to 

capture, what would happen if they put false information into the 
network, and whether the computer understands concepts in the 
same way a human does. 

We had a number of technology related challenges with the 
Knowledge Net activity, particularly in the frst round of studies. 
Learners were supposed to photograph the playmat using their 
phones and upload the information to the AI chatbot, but often the 
participants took photos of the playmat in poor lighting conditions 
or with part of the board obscured, which caused issues with the 
image recognition algorithm. These issues were mitigated in the 
second round of studies by our use of an Osmo device 1, which had 
a fxed location. Due to the challenges with image recognition, not 
all groups in the frst session were able to engage with the chatbot. 
Groups that were unable to engage with the chatbot were prompted 
to engage in a “unplugged” simulation/role-play exercise, where 
one group member acted as the computer and used the network to 
answer questions that other group members asked. 

3.2 Creature Features 
Creature Features (Figure 2) is an activity in which learners can 
use a card deck and “weight tokens” to build a training dataset for 
a feature-based machine learning algorithm that classifes birds. 
Each card depicts a creature (e.g. bluebird, bat) and includes a list 
of descriptive features (e.g. color, habitat, size). Learners are en-
couraged to look at the features and consider how to place their 
weights to create an algorithm that can correctly recognize many 
diferent types of birds. The more weight tokens that are placed on 
a card, the more examples of that creature are going to be added 
to the training dataset for the algorithm. In the second iteration of 
the design, learners were asked to build both positive (examples of 
birds) and negative (examples of non-birds) datasets. Learners can 
take a picture of their playmat and upload it to a website, which will 
tell them how well their algorithm classifes birds. This prototype 
aims to communicate AI-related competencies such as the steps 
and practices of machine learning, ways of representing knowledge, 
how agents make decisions, and data curation and interpretation 
[51]. It incorporates AI literacy design principles such as embod-
ied interaction and metaphors, collaborative discussion, providing 
opportunities to program or teach AI, and creating explainable 
algorithms [51]. We had learners engage in discussion after their in-
teraction about what birds were hard to get the AI to recognize, why 
certain creatures were misclassifed, whether they were surprised 
by the role humans play in programming the AI, and whether they 
could foresee any issues with using this technology to recognize 
other things, like faces or objects. 

3.3 LuminAI 
LuminAI (Figures 3, 4) is an activity in which learners can improvise 
movement together with an AI dance partner that is projected onto 
a screen. LuminAI was an existing AI research project [37, 49] that 
we expanded into a learning experience. In the expanded version 
of LuminAI, learners can engage with an interactive visual inter-
face to explore diferent aspects of the dancer’s decision-making 
processes and memory, such as manipulating the dancer’s response 
modes (i.e. mimicry, transforming a gesture, performing a gesture 

1https://www.playosmo.com 
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Figure 1: Knowledge Net Prototype 
Figure 3: LuminAI dance interface 

Figure 2: Creature Features Prototype 

from memory that is similar or contrasting to the observed gesture), 
switching between diferent databases of dance gestures (e.g. ballet, 
popular dance), and exploring a 3D visual representation of the way 
the dancer uses unsupervised machine learning to cluster gestures 
in memory (called MoViz [46]). This activity aims to communicate 
AI-related competencies such as ways of representing knowledge, 
how agents learn and make decisions, and aspects of machine learn-
ing [51]. It utilizes AI literacy design principles such as embodied 
interaction, varying degrees of collaboration depending on the 
installation setup [50], creating explainable algorithms providing 
opportunities to program or teach AI, incorporating learner inter-
ests, and engaging with lesser-known forms of AI [51]. After the 
interaction, we prompted learners to discuss whether they thought 
the AI was creative, whether the AI “thought” about dance in a 
diferent way than they did, how their actions afected the AI, and 
whether the agent clustered/grouped gestures well. 

4 METHODS 
We conducted a user study session for each iteration of the pro-
totypes to better understand learner engagement with the activi-
ties. We had originally planned to test each of the prototypes by 
installing them as pop-up exhibits in a science and technology mu-
seum, but due to COVID-19 we had to pivot and instead conducted 
remote user studies with families who engaged with the modifed 

Figure 4: MoViz interface 

activities from their homes. This section outlines the methods we 
used for participant recruitment, data collection, and analysis. 

4.1 Participant Recruitment 
We recruited family groups to participate using a variety of diferent 
methods, including posting on NextDoor (and having friends and 
colleagues share the post in their neighborhoods), social media, 
coordinating with our university’s education outreach program 
and reaching out to local organizations including the public library, 
the YMCA, Boys and Girls Clubs, and local Girls Who Code (GWC) 
club leaders. We received most of our responses from NextDoor, 
Girls Who Code, and “parents groups” on social media. 

Interested study participants contacted us with the number/age 
of family members that would be participating. We followed up 
with an email that asked them about several requirements for study 
completion (i.e. access to a stable internet connection, access to 
a 4x4’ open space to dance for LuminAI, access to a smartphone 
that could upload a photo to a website) and asked them for sched-
uling details regarding a good time for delivery/pickup and study 
completion. Activities were designed to ft in labeled boxes that we 
delivered to participants at a scheduled time. One box contained 
data collection materials and a written instruction packet; the other 
two boxes each contained a prototype. All boxes and activity com-
ponents were sanitized according to our university’s Environmental 
Health and Safety standards between user groups to prevent the 
spread of COVID-19. 
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The enclosed written instructions were intended to provide ap-
proximately the same amount of data as a participant would fnd 
when walking up to an exhibit in a museum. We provided detailed 
instructions on how to set up and use the exhibit (something that 
visitors might gather visually from observing others in a museum 
environment), but kept explanatory content-related text to a min-
imum (i.e. the amount that you might fnd on a sign next to the 
exhibit). The instructional packets provided with the activities are 
included in the supplemental materials. 

4.2 Consent and Study Procedure 
We asked adults participating in the study to complete a consent 
form online prior to delivering the boxes. This was done to ensure 
that the parents had a clear idea of what was involved in the study 
prior to going through the process of delivery, and also to simplify 
the in-home consent process. Children were asked for verbal assent 
during the study (see next paragraph). All participants were given 
a copy of their signed consent forms to keep. Family groups were 
compensated with $40 (either in cash or an Amazon gift card) for 
their time. 

We dropped of the boxes on the participants’ doorstep at the 
scheduled time, then called via either video or phone call (partici-
pant preference) at the designated study time. We briefy explained 
the study, pointing out key materials, and asked participating chil-
dren for assent (verbal for children under 11; written for children 
11 and up). Participants were then given the option to have the 
researcher stay on the call to answer questions or for the researcher 
to hang up and be readily available should the participants need 
to ask a question. We gave participants the option of having a re-
searcher present during the activity since this is a stressful time for 
families everywhere with regards to jobs, childcare, and general 
health and safety concerns. We did not want our research to add 
to these burdens, so we tried to make the activities fun and engag-
ing, rather than feeling like an additional task or Zoom meeting to 
complete. For calls that the researcher stayed on, they took on the 
role of an observer, watching quietly and only answering questions 
when asked so as not to unduly infuence the interaction. 

4.3 Data Collection 
We collected audio and video recordings of participant interactions 
as well as survey data from all participants ages seven and up. The 
data from the surveys is not discussed in this paper (except for a 
few notes on participant feedback and demographic data), and we 
refer the interested reader to [52] for this information. 

Since we were not present in the participant’s homes, we asked 
participants to record their own data. We drew some inspiration 
from cultural probes [27] at this stage, since cultural probe kits 
typically include tools/instruments to aid participants in collecting 
their own data. We included an audio and video recorder in the 
kit along with detailed instructions on how to record the data. 
We anticipated potentially running into some technical difculties 
when asking participants to record their own data, so we sought to 
introduce redundancy. We had participants record their interactions 
using both a video and an audio recorder, so that if one failed, we 
would at least have audio of the group’s interactions from the other 
device. We ofered groups the option of participating in a video 

call during the study, and for groups that agreed, we additionally 
recorded the video call using the video conferencing software. 

5 ANALYSIS 
We conducted a learning talk analysis of participant dialogue with 
the three activities. Conversation analysis is used in many contexts 
to understand the ways in which learners engage with content 
knowledge (e.g. [6, 55]). Understanding learning talk is particularly 
important when designing informal learning experiences like mu-
seum exhibits because participant dialogue is the “most reliable 
and accurate” indicator of learning at museum exhibits [68]. Even 
though we ended up testing the activities out in an at-home envi-
ronment due to COVID-19, understanding learning talk contributes 
both to the ability to ultimately introduce these activities in a mu-
seum down the road and to a broader understanding of how novice 
learners engage with AI-related content knowledge. 

We used Roberts and Lyons’s framework for analyzing learn-
ing talk at museum exhibits to guide our analysis, since this is 
a framework that was designed for understanding family group 
learning at museum exhibits involving embodied interaction. We 
chose to use Roberts and Lyons’s framework for several reasons. 
First, we wanted our results to be able to easily transfer to a mu-
seum setting, as our intent is to scale up the activities for museums 
down the road. Second, our research questions were focused on 
assessing whether and how the activities supported learning and 
discussion of AI literacy competencies in order to inform under-
standing of how to design AI literacy activities. Roberts and Lyons’s 
framework aforded this focus on learning talk surrounding specifc 
competencies. Finally, it is a quantifable framework that afords 
comparisons across exhibits and participant groups. Roberts and 
Lyons set their framework apart from other quantifable conver-
sation analysis methods in the computer-supported collaborative 
learning community by highlighting that their framework supports 
the ability to characterize intersubjective meaning-making in a 
way that other frameworks do not [68]. They defne intersubjective 
talk as “learners echoing and reiterating ideas as well as introduc-
ing ideas of their own, which depending on the coding categories 
and counting procedures can either over- or underrepresent the 
learning evidenced by the talk” [68]. 

Roberts and Lyons defne fve diferent types of learning talk that 
occurs at museum exhibits–management, instantiations, evaluations, 
integrations, and generations [68]. Management is “talk related to 
the establishment of joint attention, negotiation of action, or scaf-
folding exhibit use” including “explaining, asking and answering 
questions, and suggesting actions”; instantiations “indicate when 
a user says aloud a piece of information, providing opportunities 
for other visitors to internalize that information (i.e. learn from 
the exhibit)”; evaluations “make a judgment or assessment about a 
piece of information by assigning some kind of value, whether qual-
itative or quantitative”; integrating is “the act of pulling together 
multiple pieces of information presented in an exhibit...mak[ing] 
explicit connections or comparisons between multiple pieces of 
information”; and generate statements “combine information from 
the exhibit with visitors’ own prior knowledge and experiences” 
[68]. We focused on instantiate, evaluate, integrate, and generate 
statements in our analysis and did not include management codes 
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at this time as they were less relevant to the learning outcomes for 
each exhibit and we anticipated they would be the most likely to 
change in a museum vs. at-home setting. 

Audio recordings of participant interactions with the exhibits 
were transcribed for analysis by an external transcription service 
(Rev.com). Following the procedure outlined by Roberts and Lyons, 
we broke down transcripts of the audio recordings into idea units, 
where an idea unit is “marked by a distinct shift in focus or change in 
topic or purpose...Idea units can range in length from a single word, 
e.g., reading aloud a category name, to a multi sentence utterance” 
[68]. For example, the following chunk of dialogue would constitute 
a single idea unit: 

P1: Which of these on here do you really strongly feel 
is a bird? 
P2: Defnitely hummingbird. 
P1: Okay. 
P2: Because that literally has the name, “Bird” in its 
name. 

We then developed a set of codes for each exhibit to assess 
instantiate, evaluate, integrate and generate learning talk. Codes 
were developed using a combination of a top-down and bottom-
up approach. There were certain AI literacy competencies we had 
designed for that we wanted to make sure to code (top-down), but 
we also familiarized ourselves with the data by listening through 
interaction sessions and reading transcripts to identify emergent 
codes (bottom-up). Each code was given a score on a scale of 1-3, 
where 3 indicated the most relevance to the learning goals of the 
exhibit (i.e. the AI literacy competencies it aimed to communicate, 
see Table 1). Multiple codes could be applied to a single idea unit. 
Aligning the codes with AI literacy competencies means that a 
higher learning talk score indicates increased discussion of relevant 
competencies. 

A subset of the data (at least one transcript per activity) was 
coded by two analysts who then compared their results. Conficts 
were resolved via discussion until the analysts came to a mutual 
agreement, and some code defnitions were iteratively revised dur-
ing this calibration period. The fnal codes we defned for each 
activity are summarised in Table 3, including the learning talk 
score we assigned to each code. A full coding scheme is also pro-
vided in the supplemental materials. All additional transcripts were 
coded by one of the two analysts who engaged in the initial calibra-
tion process. All transcripts were broken down into idea units and 
analyzed while also listening to the dialogue in order to ensure that 
contextual information such as pacing and infection were taken 
into consideration [68]. 

5.1 Results 
We recruited a total of 14 family groups (38 participants; 21 age 
6-17 and 17 age 18+) to interact with the exhibit prototypes. One 
group (G2.4) was excluded from analysis due to a failure with audio 
and video data collection (see Table 5). Eight groups (22 partici-
pants) interacted with Iteration 1 prototypes, and six groups (16 
participants) interacted with Iteration 2. Table 4 shows a breakdown 
of how many groups/participants interacted with each prototype. 
Among the 14 adults who answered the demographic questions, 
nine identifed as White/Caucasian, four as African American, two 

as Asian American, and 1 as other Latin American (two participants 
were biracial). Most participants reported having a 4-year degree 
or graduate education (79%). Among the children, 10% were 6 years 
old, 30% were 7-9 years old, 50% were 10-14, and 10% were 15. 60% 
of children identifed as female and 40% as male. We also asked 
families about their prior experience with computing and their 
children’s prior experience with computing. Most adults consid-
ered their children to have “some” prior experience with computers 
(70%) and AI (60%). Most adults also reported that they worked with 
computers a lot or sometimes (79%) and had some prior experience 
interacting with AI technologies (79%) but did not write code (93%). 
Table 5 describes each group that participated in the study and 
summarizes the data that was collected for each group. 

5.2 Overarching Analysis 
With the data from the videos we coded for learning talk, we calcu-
lated 1) the amount of learning talk that occurred for each exhibit, 
on average; 2) the type of learning talk that occurred the most 
at each exhibit, on average (i.e. instantiate, evaluate, integrate, or 
generate); and 3) the quality of learning talk. This information is 
presented in Tables 6 and 7. Table 6 summarizes the total scores 
and median scores for 1) the number of total learning talk codes 
applied, 2) the learning talk score (calculated by multiplying the 
number of instances of each code by its assigned relevance score 
and adding all scores together), and 3) the number of codes scored 
at a level 1 (L1), level 2 (L2), and level 3 (L3), indicating the relevance 
of the code to the learning goals of the exhibit (3 being the highest). 
Table 7 summarizes the number of codes of each type that occurred 
at each exhibit. We also used the individual transcript-level learn-
ing talk data to examine “ceiling” and “foor” interactions for each 
prototype–that is, what did the most in-depth interactions look like 
vs. the least in-depth. We describe this in the next section alongside 
qualitative descriptions of learning talk with each exhibit. 

We do not present results from statistical tests of this data since 
the sample size of the population was not large enough to produce 
statistically signifcant results. Study size was limited due to the 
time-consuming COVID-19 precautions and the challenging nature 
of recruiting study participants during a pandemic. We compare 
exhibits here using median scores (also reported in Tables 6 and 
7) since LuminAI had fewer interaction sessions than the other 
two exhibits (6 rather than 10), meaning that the total scores are 
only useful for comparing Knowledge Net and Creature Features. It 
should be noted that diferent coding schemes were used to code 
each exhibit due to the difering content/interactions at each exhibit 
(see Table 3). 

Knowledge Net generated the highest median number of codes 
across all sessions, followed by LuminAI, then Creature Features. 
This same ordering was true of the learning talk median scores. 
However, it is important to note that while Creature Features had 
lower median scores, it actually had almost exactly the same overall 
learning talk score as Knowledge Net despite having notably fewer 
codes for the same number of interaction sessions. This suggests 
that there were a few interaction sessions with very high quality 
learning talk for Creature Features, which we discuss more below. 

Comparing the median scores for each learning talk type (i.e. 
instantiate, evaluate, integrate, or generate) indicates that all three 
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Knowledge Net Creature Features LuminAI 
K1: INSTANTIATE read instructions 1 C1: INSTANTIATE read instructions 1 L1: INSTANTIATE read instructions 1 
aloud aloud aloud 

K2: INSTANTIATE tile or arrow name 1 C2: INSTANTIATE name of creature 1 L2: INSTANTIATE recognize dance 
move 

1 

K3: INSTANTIATE read chatbot re-
sponse aloud 

2 C3: INSTANTIATE features from card 2 L3: INSTANTIATE response modes 2 

K4: EVALUATE strengths and weak- 3 C4: INSTANTIATE read results of al- 2 L4: INSTANTIATE databases 2 
nesses of network as a representation gorithm out loud 
of knowledge 

K5: EVALUATE chatbot answers 2 C5: EVALUATE whether creatures are 
“birdlike” 

2 L5: EVALUATE quality of agent’s 
moves 

1 

K6: EVALUATE quality of network 
structure 

2 C6: EVALUATE consider where to 
place weights 

2 L6: EVALUATE compare 
datasets/dance types 

3 

K7: INTEGRATE make connection be-
tween tiles 

1 C7: INTEGRATE justify decision 3 L7: EVALUATE compare clusters 3 

K8: INTEGRATE make connection be- 3 C8: GENERATE features from prior 1 L8: EVALUATE compare clustering al- 3 
tween network and chatbot knowledge gorithms 
K9: GENERATE compare/contrast net- 3 C9: GENERATE make a plan for how 3 L9: EVALUATE notice what is lost in 3 
work to human intelligence to modify the dataset representation 

K10: GENERATE connect network to 1 C10: GENERATE make prediction 3 L10: INTEGRATE recognize that agent 2 
personal interests about algorithm results is responding to you 

K11: GENERATE discuss nuances of 2 C11: GENERATE notice surprising re- 2 L11: GENERATE hypothesis 2 
network concepts and relationships, sult 
drawing on prior knowledge 

K12: GENERATE explanation for chat- 3 C12: GENERATE explanation of algo- 3 L12: GENERATE recognize hardware 1 
bot response rithm results or software from prior experience 

K13: GENERATE question to ask chat- 2 C13: GENERATE connect activity to 3 L13: GENERATE teach agent dance 2 
bot other application domains move 

K14: GENERATE make prediction 3 L14: GENERATE discuss whether 3 
about chatbot response agent is creative 

Table 3: Summary of learning talk codes for each activity. Learning talk scores for each code are included in the table. Scores 
range from 1 to 3 with 3 being the most relevant to the learning goals of the activity. Full defnitions for each code are provided 
in the supplemental materials. 

Activity Iteration 1 Iteration 2 Total 
Groups Participants Groups Participants Groups Participants 

LuminAI 4 12 3 9 7 21 
Creature Features 6 17 4 10 10 26 
Knowledge Net 6 14 5 16 11 29 

Table 4: Number of participants who interacted with each prototype 

exhibits fostered roughly the same amount of instantiation. There generate dialogue. This suggests that learners were making more 
was more evaluation dialogue at Creature Features and LuminAI connections between exhibit concepts and their prior experiences 
than Knowledge Net. This may refect that learners were more en- at Knowledge Net than the other two exhibits. 
gaged in evaluating the AI’s accuracy in Creature Features and 
LuminAI than in Knowledge Net, which makes sense because most 5.3 Knowledge Net 
learner groups did not engage in lengthy interactions with or discus- 5.3.1 Ceiling and Floor Interactions. The session with the highest 
sions about the chatbot in Knowledge Net (see next section for more learning talk for Knowledge Net was G1.4 with a score of 310, 161 
detail). Knowledge Net, however, fostered the most integrate and total codes, and a hold time of around an hour. The session with 
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Group Number Group Description Exhibits and Hold Time Audio Video 

Group 1.1 Mom and 11 year old son Knowledge Net (17:01) 
Creature Features (24:36) 

Partial Partial 

Group 1.2 Mom (only engaged with KN), nanny 
(only engaged with CF), 9 year old girl 

Knowledge Net (30:33) 
Creature Features (15:53) 

Yes Yes 

Group 1.3 Mom, 11 and 8 year old sons Knowledge Net (22:48) 
Creature Features (28:45) 

Yes Partial 

Group 1.4 Mom, 8 year old daughter Knowledge Net (1:01:43) 
Creature Features (20:16) 

Yes Yes 

Group 1.5 Mom, 6 year old son LuminAI (11:55) 
Knowledge Net (32:17) 

Yes Yes 

Group 1.6 Mom, Dad, 11 and 12 year old daughters LuminAI (26:36) 
Creature Features (27:10) 

Yes Yes 

Group 1.7 Mom, 6 year old daughter LuminAI (14:27) 
Creature Features (14:02) 

Yes Yes 

Group 1.8 Mom, Dad, 11 year old son, 15 year old 
daughter 

LuminAI (47:01) 
Knowledge Net (37:19) 

Yes Yes 

Group 2.1 Mom, 9 year old daughter Knowledge Net (20:55) 
Creature Features (21:48) 

Yes Yes 

Group 2.2 Mom, 9 and 15 year old daughters Knowledge Net (20:33) 
Creature Features (52:20) 

Yes No 

Group 2.3 Mom, 10 year old daughter Knowledge Net (54:00) 
Creature Features (36:20) 

Yes No 

Group 2.4 (excluded 
from analysis) 

Dad, 10 and 12 year old sons LuminAI 
Knowledge Net 

No No 

Group 2.5 Mom, Dad, 9 year old son LuminAI (31:09) 
Creature Features (36:00) 

Yes Yes 

Group 2.6 12 and 14 year old daughters, mom (took 
on observer role, did not engage) 

LuminAI (14:14) 
Knowledge Net (22:55) 

Yes Yes 

Table 5: Group descriptions and summary of data collected during at-home user studies 

Exhibit Num. LT L1 L2 L3 
Codes Score Codes Codes Codes 

Knowledge 
Net 
(n=10) 

938, 
Mdn=100 

1476, 
Mdn=144 

510, 
Mdn=122 

318, 
Mdn=59 

110, 
Mdn=21 

Creature 736, 1475, 182, 369, 185, 
Features Mdn=48 Mdn=86 Mdn=49 Mdn=74 Mdn=23 
(n=10) 
LuminAI 371, 702, 121, 169, 81, 
(n=6) Mdn=59 Mdn=106 Mdn=30 Mdn=45 Mdn=14 

Table 6: Learning talk score summary. N values indicate 
number of groups, not number of participants. 

the lowest score was G1.1 with a score of 19, but due to issues with 
the recording devices, this was only a partial recording of G1.1’s 
interaction. The sessions with the next lowest score were G2.1 and 
G2.6, both with a score of 65 (hold times around 15-20 min, total 
codes around 40). The median score was 144. This indicates that 
learning talk scores for Knowledge Net overall were quite high (in 
comparison to the shortest interaction). 

Exhibit Instantiate Evaluate Integrate Generate 
Knowledge 
Net (n=10) 

244, 
Mdn=21 

77, 
Mdn=7 

248, 
Mdn=30 

310, 
Mdn=30 

Creature 327, 189, 62, 199, 
Features Mdn=24 Mdn=14 Mdn=3 Mdn=17 
(n=10) 
LuminAI 152, 99, 46, 74, 
(n=6) Mdn=25 Mdn=15 Mdn=7 Mdn=13 

Table 7: Learning talk types summary. N values indicate 
number of groups, not number of participants. 

Groups with lower learning talk scores for Knowledge Net tended 
to move through the interaction quickly and in a linear, not iterative 
fashion. G2.1 and G2.6 both created relatively simple networks 
without a lot of discussion, tested them out with the chatbot, and 
moved onto the next activity. G1.1 actually engaged for longer and 
built a more complex network, but their video was cut short and 
they did not engage in as much verbal dialogue as the other groups 
did. Groups with higher learning talk scores generally spent a long 
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time constructing the network, considering many diferent tiles 
and nuanced connections between them. 

Only a couple of groups (mostly G1.4) engaged for an extended 
period with the chatbot, asking it many questions and refecting 
on their network’s strengths/limitations. This led to more L1 codes 
and less L2 and L3 codes for the activity. Despite having the highest 
overall learning talk score, this was the one activity where learners 
could engage for a long period of time with the exhibit without 
really discussing topics that were highly relevant to the learning 
goals of the exhibit. Some groups that had quite high learning 
talk scores still did not appear to fully understand the chatbot. For 
example, one of the groups that engaged the longest with Knowledge 
Net was not able to get the chatbot to work because they thought 
they could talk to it using Siri on the iPad (rather than typing) 
(“Maybe we have to use speaker”...“You’re trying to use the voice?” 
“Yeah, that’s what I was trying” (G2.3)). 

5.3.2 Description of Learning Talk. All participant groups built 
networks and connected tiles with arrows to represent relationships. 
Knowledge Net fostered a lot of discussion across groups about how 
to connect diferent concepts and what relationships to represent 
on the playmat. Many learner groups connected Knowledge Net 
to their personal interests, building networks about their personal 
lives (e.g. "Mom has child. / Or mom has me, right? / Right. Yeah, 
I like mom has me" (G2.3)) or making connections between the 
network and their interests (e.g. “Mommy used to play clarinet” 
(G1.2)). 

Several groups had discussions about whether the data in their 
network should be general or specifc–in other words, whether it 
should be true in all cases or just in a specifc case (e.g. for their 
family). For example, G2.3 wondered whether the relationship Fa-
ther DISLIKES cat had to be true in all cases: “Papa don’t mind cats. 
/ It doesn’t have to be us, it could be anybody.” Others considered 
creative or double meanings of certain connections–“I was about to 
say tails dislikes insects. Because you know horses have tails, and 
the tail keeps swatting the insect away” (G2.1); “Snake IS sticks. / 
Snake is like sticks, because it’s slithery and like ... snakes. / Oh, 
snake is like a stick. Snake IS sticks. Okay” (G1.4). 

A number of learners recognized some of the limitations of the 
knowledge representation they were building. Some learner groups 
noted that certain items on the playmat could not be connected due 
to the layout of the map, and that there were no “verb” connector 
arrows (e.g. runs, eats, plays) (“Well, there’s no verbs. I mean, these 
are the verbs, so... / So, there’s no actions? / Yeah./ ... There’s like 
state of being, but no action” (G1.8)). These features limited the 
type of information they were able to teach the computer. Other 
learners recognized nuances of certain concepts that they were not 
able to capture in the semantic network–for example, G1.3 built 
a network with the relationship “boss HAS employee” but then 
realized this may not hold true for all employees and brought up 
the question of self-employment. 

Of the groups that were able to interact with the chatbot (rather 
than doing the simulation role play activity, see section 3.1 for 
more detail), many engaged in relatively minimal conversation with 
the chatbot, using it only to confrm that their network had been 
accurately captured by the computer, then moving on. However, 
one 8 year old girl (G1.4) spent a lot of time engaging with the 

chatbot (hold time for the entire interaction was around an hour) 
and probing to understand what the AI learned from her network. 
The actual interaction with the chatbot clarifed the connection 
between the network and how the computer used it. For example, 
in G1.4, the 8 year old girl asked the computer “What’s in the 
carriage?” since the picture on the tile of a mother depicted a fgure 
with a baby carriage. When the chatbot responded that it did not 
know what a carriage was, the girl had a discussion with her mom 
about how the computer did not really know what was depicted 
in each image (other than the name of the concept it represented). 
Unfortunately, this level of questioning and refection did not occur 
with other groups. 

Most learner groups seemed to recognize that their network was 
being used to teach or program the AI chatbot (e.g. “You can tell it 
anything” (G2.6)). This was even true for some of the learner groups 
that did the simulated exercise rather than using the actual chatbot. 
In G1.3, the mom played the role of the chatbot while her sons 
asked her questions. At one point, one of the sons was displeased 
with the result and asked “Can I edit your programming?” How-
ever, other groups that participated in the simulation activity got 
confused about how to act as the “computer” and not use their own 
knowledge–for instance, when one girl asked their mom (who was 
role-playing the computer) “What is clarinet?,” the mom responded 
“Clarinet is another type of wind instrument that has one reed. A 
fute doesn’t have any reeds, did you know that?” (G1.2). 

During the discussion portion of the activity, some learner groups 
recognized that if you put false information in the network, the 
chatbot would give incorrect results (“So what happens if you put 
false information in the semantic network / Well it says it does 
have it” (G2.6)). A few groups tested this out and built networks 
containing false information ("Nose DISLIKES eyes, that’s not true. 
I’ll see what that does.” (G1.5); “Does, oh no, sister HAS sheep. No. 
Wait, I’m going to say sister HAS eggs” (G2.6)). 

One of the discussion questions asked learners to refect on 
whether the computer really understands what a cat is, for example, 
if the computer does not know any information outside of what 
was built into the semantic network. Most learners felt that the 
computer did not fully understand what a cat was. Several groups 
also engaged in fruitful discussions about whether or not human 
reasoning processes were similar to or diferent from the semantic 
network (“I think it’s diferent because, well, I mean, no, not really. 
I mean it tells someone something, then it kind of understands it.” 
(G2.6); “Diferent...Because computers don’t really learn on their 
own. They have to be taught more. And humans, they kind of learn 
at their own pace while computers, they just all learned the same 
way.” (G1.3); “...in our brains we subconsciously know everything 
that we know about this one thing, so every time it’s like brought 
up...we’re thinking about all of the things that we know and all of 
the things that have connections to that one thing, when that one 
thing is said. But with the bot, it only knows... / Right. / That stuf. 
/ So it doesn’t have experience from before” (G1.8)). 

An unexpected result we had was that Knowledge Net engaged 
younger learners in discussions where they were able to learn about 
topics unrelated to AI education. For example, in a mother-daughter 
duo (G2.3), the mom was able to teach her daughter several new 
words for relationships throughout the activity (e.g. “What’s a peer? 
/ You don’t know what a peer is? A peer is like someone your age 
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Key Takeaways for Knowledge Net 
Consistently supported long interaction times and physical and 
verbal collaboration 

Had a low barrier of entry for adults with lower technical literacy 
and younger kids 
Consistently fostered a lot of learning talk during network con-
struction, though at a lower relevance level (L1, L2) 
Did not foster as much dialogue about the actual chatbot in-
teraction, which limited evaluation and learning talk that was 
more relevant to key competencies (L3) 
Learners made connections between exhibit concepts and prior 
experiences and interests (as evidenced by integrate and generate 
dialogue) 
Supported dialogue with potential for cross-disciplinary learn-
ing 

Table 8: Key takeways for Knowledge Net 

/ Oh, someone who I hang out with? / Yes”). This suggests that 
Knowledge Net may be well-suited for interdisciplinary settings (e.g. 
learning about AI in the context of a biology course or a unit on 
the self/family). Existing research investigating how to integrate 
AI education into core curriculum areas could inform future explo-
ration on how to adapt Knowledge Net for interdisciplinary learning 
contexts [42]. 

5.4 Creature Features 
Key takeaways from our analysis of learning talk at Creature Fea-
tures are summarized in Table 9. When designing Creature Features, 
we envisioned a quality interaction with the activity to look as 
follows. A learner group would build a dataset from the bird cards, 
considering the features on the cards and which cards to include. 
Learners would then photograph the playmat and upload it to 
the website to see results. If the recognition algorithm performed 
poorly, we expected that learner groups would iterate on their 
dataset, perhaps more carefully considering the features on the 
cards or looking at a wider/more representative variety of creatures 
to include in the dataset. Discussion around which cards to include 
in the dataset at this stage would demonstrate understanding that 
the computer learned from the data on the board, recognition of 
the role that features and variety play in determining the results, 
and learners would generate hypotheses and predictions about 
the computer’s decision-making processes. During the discussion 
portion of the activity, learner groups may begin to comment on 
strengths/weaknesses of this approach and connect what they have 
learned to other application domains (e.g. facial recognition). 

5.4.1 Ceiling and Floor Interactions. The session with the highest 
learning talk for Creature Features was G2.5 with a score of 398, 188 
total codes and a hold time of around 36 minutes. The session with 
the lowest score was G1.1 with a score of 43, 22 total codes, and 
a hold time of around 24 minutes. The median score was 86. This 
illustrates that there was a wide variance in learning talk scores, 
but that most of the interactions fell on the lower end (only three 
groups had a score of over 100). This does not necessarily mean that 
the groups with lower scores had poor or low quality interactions. 

Our observations indicate that the groups with comparatively lower 
scores tended to create a dataset after considering several diferent 
creatures, test it out, and iterate on it once or twice. This includes 
G1.1, where there was not as much learning dialogue mostly be-
cause the 11 year old took the lead on the dataset creation/iteration 
and did not engage in a lot of dialogue with his mom during the 
activity. 

The groups with higher learning talk scores (over 100) at Crea-
ture Features tended to engage in more in depth discussions of the 
features on the cards and make predictions about what the algo-
rithm would do when they made changes to their dataset. These 
groups sometimes hit a ceiling in the interaction when they had 
iterated numerous times on their dataset and could not fgure out 
why their score was not improving or reaching 100% accuracy. 

5.4.2 Description of Learning Talk. All learner groups engaged in 
initial discussion of which cards to include in their dataset(s). In 
some cases, the initial decision-making process was quick–learners 
did not consider many cards and made decisions based on personal 
preference or prior knowledge rather than the features on the cards 
(e.g. “And a turkey vulture because they get rid of roadkill” (G2.1), 
“Which ones do you think you would see around here?” (G1.2)). 
Other groups made initial decisions based on which cards they 
thought were most “birdlike” (e.g. “So which one would identify 
mostly as a bird? What examples and features on each one?” (G2.1?); 
“Honestly, a cardinal is the most bird-like thing here.” (G1.4); “Well 
I think hummingbirds / Are important. / I think they’re a pretty 
good representation. They’re small but...they’ve got wings / Wings, 
beaks. / And a beak. / They look like birds” (G2.5)) or based on 
features that they thought most birds have (e.g. “I mean, can you 
think of another animal that’s not a bird that lays eggs?” (G1.4)). 

There were many features for people to consider and so some 
groups narrowed their focus to a few diferent features rather than 
thinking about all of them. For example, G1.1 tried to create a 
dataset that represented birds of a variety of sizes (“So you’re going 
to put one right there. Two right there. Two right there. And all 
of these are big birds, large birds. / We only have two left. / So 
these are... this is a small bird, and these two are medium sized 
birds. (G1.1)). The groups with higher learner talk scores tended to 
discuss a wider variety of features and spent more time considering 
how placing extra weight on certain examples would afect the 
outcome of the algorithm (e.g. “Because if we only give more stuf 
to the cardinal and the robin, then it might ignore other things that 
are like... It might ignore a chicken because it doesn’t fy.” (G1.3); 
“So I would think for the kiwi, I would give it less emphasis because 
the kiwi actually doesn’t fy. It’s fightless like a penguin and or an 
ostrich, or an emu. But it still has the beak and lays eggs” (G2.5)). 

Most learner groups recognized that they were in charge of 
teaching the computer how to recognize a bird (e.g. “Let’s see what 
the robot learns” (G2.5)), but we did see some confusion between 
computer knowledge and human knowledge during the activity. In 
G2.3, the girl very carefully considered the features on the cards, 
but was focused on including features that she thought all people 
would want to know (e.g. “Habitats, yes, because some people might 
want to go looking, not just to hunt it down, but some people might 
want to know what area it lives in to maybe get a good view at 
it”). She included cards with features that she thought humans 
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might not know and focused less on features she thought all people 
would already understand (e.g. “I don’t know what basically a heart 
chamber is, so I’m going to say that it is necessary for them to 
know, because I don’t know it, so I’m pretty sure a lot of kids out 
there wouldn’t know it” (G2.3); “I don’t think it’s necessary that 
they need to know that it has a beak, because usually all birds have 
beaks.” (G2.3)). Later, spurred by the mom, they had a discussion 
about the diference between the computer’s knowledge and the 
human’s knowledge–“For instance, you may know that a bird has 
a beak. / Yes. / But does the computer know the bird has a beak? / 
No.” 

All groups tested their initial datasets and discussed the results. 
Participants often expressed surprise over the results (“A platypus!” 
(G1.6); “How does it get crocodile?” (G1.3); “I don’t get the penguin. 
I don’t know why.” (G2.5)). Many made hypotheses about why the 
computer wrongly categorized certain creatures (“I mean I get why 
they say airplane, and I also get why they– / Because of the wings? 
/ ... and I also get why they said Superman, he could fy.” (G2.1); 
“Maybe it’s because it’s the only bird that swims. So it’s getting 
more non birds don’t swim data than birds can swim” (G2.5)). 

All groups except G1.4 iterated on their datasets at least once 
(G1.4 spent a very long time on the Knowledge Net activity prior to 
Creature Features and the daughter was growing tired). Groups with 
higher learning talk scores iterated multiple times. Sometimes the 
results spurred participants to pay closer attention to the features 
on the cards (“Make sure you’re looking at the features that’s listed. / 
Which features? / The features on here. You see some of these might 
have a lot in common features with non-birds.” (G2.1)). Groups 
tried to improve their scores in a variety of ways, such as switching 
out cards to add more variety (e.g. including a swimming bird) or 
weighting cards diferently (e.g. less weight on a non-bird like a 
chipmunk). Groups were often disappointed if their score went 
down on the second iteration (“That’s really confusing. 59 is not 
good.” (G2.3); “So this time it says that based upon our data, it was 
only able to do 77% of the time instead of 90. I’m surprised. / ... This 
is hard. What are we supposed to do?” (G1.6)). 

During the discussion portion of the activity, some groups ex-
pressed surprise by the role the human played in programming the 
AI (“Were you surprised at all by the role that people played in 
determining whether an AI algorithm works? / I would say yes / 
All right. I think so because we got to input this information for it 
to learn and work properly / Instead of looking it up on Google” 
(G2.1); “Kind of surprised, because I thought you would basically 
just, I don’t know. I just, it seems a lot harder than I thought it was, 
I guess, because you have to try to train it the right way. But if you 
like steer it towards one direction of a certain type of bird, then 
it might think the types of birds are not birds, or they’re not sure 
about it.” (G1.6)). Other groups were more familiar with the role 
humans played in programming computers (“So did you know that 
this is how it works, that people feed data into AI and AI learns? / 
Only because we did a unit in computer science” (G1.3)). 

As in Knowledge Net, some groups recognized that they could 
teach the AI false information: “And I bet we could rig it, we could, 
trick it to get really low percentages, you know, where it’s really 
bad at fguring out what a bird is. If humans have to make the AI 
smart, could humans make not smart AI? Yeah? If we didn’t do a 
good job” (G2.5). One group (G1.3) purposefully made a bad training 

Key Takeaways for Creature Features 
Supported constructive controversy dialogue [16] 
Supported evaluation dialogue related to AI literacy competen-
cies such as the steps and practices of machine learning and 
how agents make decisions 
Of all three activities, CF had the most evenly distributed rele-
vance of learning talk (between L1, L2, and L3) 
Wide variance of learning talk between participant groups 
Most groups grasped basic idea and iterated on dataset at least 
once, but did not engage in in-depth discussion 

Iterative cycle of testing and revision supported in-depth dis-
cussion of features and their impact on the algorithm for some 
groups 
Most successful with families with older children (ages 10 and 
up) 
Some groups grew frustrated when they hit a ceiling and could 
not improve score further 
Need more scafolding to support learner groups with less prior 
knowledge in transferring knowledge from the activity to other 
contexts 

Table 9: Key takeaways for Creature Features 

dataset to see what would happen ("So it put Superman as a bird? / 
Yes. / Because you gave it some weight, right? / Right./ Okay, well 
that’ll do it (G1.3)). 

Only a few learner groups (mostly those with higher overall 
learning talk scores) considered how what they learned in this ac-
tivity might transfer to other applications. Most of the connections 
made were explained by parents to their kids. Some examples are 
included below. 

G1.6 (parent): I can give you an example too, like 
with our video cameras...It’s really good at identifying 
people during the day, but at night it goes to black 
and white. And so there’s, I don’t think, the colors 
and stuf, I think, make it difcult to pick out people 
more because it’s just black, gray and white, and it’s 
a lot harder. So I think if it had been trained on lots of 
normal color, daytime pictures than black and white 
pictures, it would have been better. 
G1.6 (child): I think recognizing a face would be really 
hard because it has to do every exact detail and stuf. 
And on here we found that it’s kind of hard for it to 
recognize the details and stuf. 
P1 (parent): If you said I’m going to rely on this com-
puter program to pick human faces out of pictures– 
P2 (child): It could say the wrong face, it could say 
someone’s face is not the correct one. 
P3 (parent): Make a mistake. 
P1 (parent): Yeah. Pick something. That’s not a face, 
but maybe looks like a face with either eyes or a 
mouth, but really it’s like a tree with a wood pattern 
or something. (G2.5) 



Family Learning Talk in AI Literacy Learning Activities CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

5.5 LuminAI 
Key takeaways from our analysis of learning talk at LuminAI are 
summarized in Table 10. We envisioned a high quality interaction 
with LuminAI starting with family members testing out and danc-
ing with the agent. They may notice things as they dance, like 
recognizing that the agent is responding to them or learning from 
their movements. They may also recognize movements that the 
agent is performing. As the family member interacts with the agent 
for longer, another family member might investigate how to toggle 
some of the dancer “settings.” They could try out switching a data-
base from hip-hop to ballet, or switch response modes to see what 
happens when the agent responds with moves that are diferent 
from the ones you have performed. This may spur new observations 
about the agent’s abilities. After dancing with the agent for awhile, 
the family could check out the MoViz tab and move around in the 
virtual space to explore the diferent clusters of agents. They might 
switch between databases and diferent algorithms to see how that 
afects the composition of the clusters, and compare diferent ges-
tures that are in each cluster. They might look around to try to fnd 
their own dance moves and see where they are clustered. 

5.5.1 Ceiling and Floor Interactions. The session with the highest 
learning talk for LuminAI was G1.8 with a score of 221, 113 total 
codes, and a hold time of around 47 minutes. The session with the 
lowest learning talk was G2.6 with a score of 50, 23 total codes, and 
a hold time of around 11 minutes. G1.8 danced with the agent for a 
long period of time, putting on music in the background and taking 
turn teaching it dance moves and toggling between the controls. 
They engaged with MoViz for a shorter period of time (but longer 
than most other groups) and tried out all of the features. They then 
engaged in a lengthy discussion about the strengths and weaknesses 
of the agent as a dancer and whether or not the AI was creative. 

G2.6 (two teenage girls) interacted with all exhibit components 
despite their low learning talk score and short interaction time. 
They 1) verbally recognized that the agent responded to and learned 
from them; 2) noticed that the agent modifed their dance moves; 3) 
engaged with MoViz and noticed that diferent clusters had diferent 
types of movements in them. This indicates that even though there 
is a high ceiling for interaction (indicated by G1.8), groups that 
interact for shorter periods of time (for example, in a museum) can 
still interact with all components of the installation and touch on 
the key learning goals. 

However, some of the other groups that had lower scores had 
younger kids that engaged primarily with the dancer on mimic 
mode and were not interested in interacting with MoViz. This a 
pattern we have observed in our prior installations of the Lumi-
nAI exhibit–young kids often enjoy seeing a “magic mirror” efect 
while older kids are more likely to recognize the backend reasoning 
capabilities of the agent [50]. 

MoViz engaged older kids and adults more than our youngest 
participants, although learners in general did not spend a very long 
time interacting with it. Groups with higher levels of learning talk 
engaged with the agent for longer, trying out multiple diferent 
response modes and datasets and spending a shorter period of 
time interacting with and inspecting the gestures in MoViz. Most 
learners did not engage much with the toggle feature to try out 

diferent clustering algorithms–this may need further explanation 
or improved UI scafolding if we include it in a future exhibit. 

5.5.2 Description of Learning Talk. In the vast majority of the in-
teractions (even ones with lower learning talk scores), learners 
recognized that the AI was learning from them. This is an improve-
ment over previous versions of LuminAI that did not have the 
tools built in to foster learning through interaction [49]. This im-
provement was evidenced by learners’ commentary about teaching 
the AI (“Maybe you should try to teach it one of the dances from 
your dance class” (G1.8); “That’s the AI. It’s learning my moves” 
(G2.6); “How did your actions afect the AI’s dance moves / Well I 
told them some dance moves, right? I put dancers in the memory” 
(G2.6); “Whoa, look at it doing [name]’s dance.” (G1.5)). 

Most learner groups interacted with the toggles on the menu 
that allowed participants to switch out the database or try diferent 
response modes (e.g. “So, you can do user dances, popular dances, 
ballet, contemporary dance. You should do ballet. Do your ballet 
from your class.” (G1.8)). Some learner groups engaged in discussion 
about the way the response modes afected the interaction (e.g. 
“Well I only did mimic, but then the other one, it kind of, it was 
contrast with mine, so it was like we were dancing together” (G2.6); 
“Do something to the contrast. Okay, so do a dance. / So it’ll do 
something diferent? / Yeah. All right, okay. / Okay, hold still. / So 
it’s doing bigger movements. / And slower maybe" (G2.5)). 

The youngest children in our study (age 6, G1.5 and G1.7) had 
a harder time recognizing that the agent was learning from them 
and just enjoyed dancing with the AI (without engaging with the 
learning content). When the parents started to look at the MoViz 
tab, the youngest kids were uninterested and wanted to return to 
dancing (“I don’t want these ones, I want the dancing. I just want 
the dancing” (G1.5); “I don’t really get this one” (G1.7)). The younger 
kids did enjoy having the databases switched to try diferent types 
of dance (“I want the ballet!” (G1.5)) and recognized when the AI 
was performing a common dance move (“It’s dabbing” (G1.7)). 

We coded for a variety of diferent learning interactions partic-
ipants could have with the MoViz interface. Most groups did not 
engage for a long period of time with or talk much about MoViz. 
Several groups observed diferences between the diferent clusters 
of dance moves (“I feel like the green ones are very hip-hoppy I 
think / Yeah / And the yellow ones...are the classic moves I think” 
(G2.6); “Yeah, doesn’t it seem like the green ones are more toward 
centered...and then the blue ones are more out from the body?” 
(G1.8)). 

During the discussion portion of the activity, several learner 
groups engaged in discussion of whether the computer was creative 
and what qualifed as creativity (e.g. “I think it’s creative because 
it learns and it has the mimic but it also has the do something 
new with it.” (G1.8)). Learners also discussed the strengths and 
limitations of the AI agent and its representation of the human 
body. For example, the mom in G1.7 brought up a technique her 
daughter was learning in dance class–“They’re pretty soft. And 
we’ve been learning about soft arms. / Mm-hmm (afrmative). / It’s 
kind of hard for the computer to do super soft, smooth movements. 
Right? It’s a little bit more rigid”; “It seems like the AI is not as 
graceful as a human. I don’t know how you quantify that...” (G1.8); 
“It doesn’t have the physical constraints that humans do” (G1.8)). 
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Key Takeaways for LuminAI 
Collaboration took the form of turn-taking 

Most groups with lower interaction times were still able to touch 
on all relevant competencies 
Youngest participants (age 6) did not engage with competencies 
Supported evaluation talk related to knowledge representations 
and agent decision-making 

Supported a high ceiling for interaction time and discussion 

Learners (especially younger kids) did not engage as much with 
MoViz as with the main system 

Spurred discussion about AI and creativity 

Table 10: Key takeways for LuminAI 

Some groups also discussed how the AI agent and humans were 
similar or diferent: “Well, like I said before, it takes other dances 
and it can make it its own or it can learn that specifc dance. That’s 
kind of how humans do it, too, because if you have a choreogra-
pher, you get taught the exact dance but then if you are your own 
choreographer, you make up your own dance based of of other 
people’s dances. So it can do both of those things” (G1.8). 

6 DISCUSSION: REFLECTING ON AI 
LITERACY DESIGN PRINCIPLES 

In this section, we return to the AI literacy design principles (DPs) 
we originally developed based on a review of related literature in 
the feld [51]. Our empirical investigations seek to contribute a 
deeper understanding of how these principles work in practice. We 
review most of the principles, but skip over several that our exhibits 
did not explicitly address or provide signifcant insight into. 

6.1 DP1: Explainability and DP4: Promote 
Transparency 

DP1: Explainability calls for making interactions with AI “more 
explainable,” making functions transparent where possible. DP2: 
Transparency calls for promoting transparency in all aspects of AI 
design [51]. We discuss these design principles together since they 
are closely related. We aimed to increase transparency in LuminAI, 
taking a previously opaque human-AI interaction and adding in 
user controls and visualizations of the AI’s reasoning. We explicitly 
designed the LuminAI UI to be exploratory and open ended, aiming 
to foster creative expression and active prolonged engagement [34] 
in addition to making the AI algorithm “explainable.” 

Most learner groups successfully engaged with the part of the 
LuminAI interface that allowed learners to toggle response modes 
and databases. Learners recognized that the agent was able to learn 
from them and discussed the diferent ways in which the agents 
were able to respond, which is not behavior we have observed 
in prior versions of the system without the educational interface 
components. 

However, more learner groups struggled to use the MoViz inter-
face, especially those with younger kids. Even the learner groups 
that engaged with MoViz only did so for a short period of time. 
Some learners expressed that they were overwhelmed by the MoViz 

interface (e.g. “Whoa, limb centroids has way more green guys than 
the...temporal clustering guys. I don’t really understand what these 
diferences are. (G1.5); “All right. Now you can do it. So these are, 
this is temporal clustering. The other was limb centroids. / What’s 
that? / I’m not sure exactly what that means” (G1.8)). 

These fndings suggest that although they can lead to learning, 
explanatory interactive visualizations provided with AI algorithms 
may be intimidating for novice users and require additional scafold-
ing. It is also possible that the MoViz UI was confusing to users and 
this issue is specifc to our project–additional investigation into 
this question is needed. 

The less intimidating nature of the LuminAI response mode 
interface indicates that an efective way to expose the inner workings 
of AI to a novice audience may be to make components of the algorithm 
itself adjustable/customizable, rather than or in addition to providing 
explanatory visualizations. Incorporating user controls in particular 
led to signifcantly more understanding of the agent’s abilities than 
we have seen in prior installations of this project [36, 49]. This 
suggests that allowing learners to interactively explore/customize 
components of AI projects could be useful in other contexts (e.g. 
workplaces) to familiarize users with aspects of AI systems they 
are using. 

Learners requested more “explainability” in the Creature Fea-
tures exhibit, asking for explanations of why the machine learning 
algorithm classifed certain creatures the way it did in order to aid 
in the iterative design of their datasets. The lack of explanation 
present in the algorithm’s feedback placed a “ceiling” on the inter-
action, preventing learners from further iterating on their designs 
when they could not fgure out why their accuracy scores were 
not improving. This emphasizes the potential of explainability to 
deepen learners’ engagement with AI literacy learning activities. 

6.2 DP2: Embodied Interactions 
Our explorations of embodied interaction in exhibit design demon-
strated that tangible and full-body interfaces were engaging and 
lowered the barrier of entry for learners, but embodied metaphors 
needed to be made more explicit to minimize learner confusion. Crea-
ture Features and Knowledge Net utilized tangible pieces like tiles, 
cards, and tokens as interfaces for training or teaching AI algo-
rithms, drawing on Horn’s theory of cultural forms [31]. Creature 
Features and LuminAI both used embodied metaphors to communi-
cate abstract AI concepts. In Creature Features, “weight” tokens are 
used to place emphasis on a specifc item in a dataset. In LuminAI, a 
3D virtual space is used to visualize clusters of gestures created by 
an unsupervised learning algorithm. LuminAI was the only exhibit 
that involved a full-body experience [74]. 

The tangible interfaces were largely a success, receiving positive 
feedback from many participants and lowering the barrier to entry 
for teaching and training AI algorithms. The full-body dance inter-
action was also engaging for users–many learners found dancing 
with LuminAI to be particularly fun and enjoyed seeing the agent 
respond to their personal dance moves. 

Interaction and discussion time was often skewed towards the 
embodied component of activities. For instance, in Knowledge Net, 
participants focused heavily on selecting tiles and relationships to 
construct the network, with less time spent interacting with and 
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discussing the chatbot. Similarly, participants spent signifcantly 
more time dancing with LuminAI than they did exploring the MoViz 
interactive visualization. This imbalance points to the engaging 
nature of the embodied interactions but raises additional research 
questions about how to foster AI learning experiences that span 
both physical and digital interfaces. 

The embodied metaphors in Creature Features and LuminAI 
elicited more mixed results. An early paper-based prototype of 
Creature Features–called Neural Net–involved a very literal weight 
metaphor in which learners physically placed weight on diferent 
nodes of an actual net [48]. Learners expressed confusion over the 
exact efect of the weight on the results of the algorithm. Some 
of this confusion was mitigated by focusing on a feature-based 
learning algorithm in the next iteration of Creature Features, but 
several learners still expressed confusion over the exact function-
ality of the weight tokens. The fnal version of Creature Features 
resolved most of this confusion (indicated by lengthier hold times 
and no participant survey comments about confusion) by making 
the function of the tokens much more explicit in the text engraved 
on the gameboard (“How many of this creature do you want to 
include in your dataset?”). Numerous participants also expressed 
confusion over the MoViz interface in LuminAI, not fully under-
standing why gestures were grouped together in space or why 
some were closer to each other than others. These fndings suggest 
that if designers incorporate embodied metaphors in the design 
of AI literacy learning experiences, the connection between the 
embodied metaphor and its relationship to the algorithm needs to 
be made very explicit. This is supported by prior work that suggests 
that mappings between embodied metaphors and concepts must 
be readily discoverable in order to be understood by learners [7]. 

6.3 DP3: Contextualizing Data 
DP3: Contextualizing Data suggests encouraging learners to investi-
gate contextual information about datasets such as how they were 
collected, who they were made by, and what the limitations of the 
data are. Prior work suggests that data that is relevant to learn-
ers’ lives, low-dimensional, and/or “messy” (not clean or neatly 
categorizable) can aid in data contextualization [15]. 

Creature Features was the exhibit prototype that touched the 
most on this design principle. Learners were put in the shoes of 
a data scientist and asked to curate a low-dimensional dataset to 
defne a “messy” concept–what a bird is. The low dimensionality of 
the dataset (six items, multiplied by the number of weight tokens 
on each) created a low barrier of entry for learners and allowed 
learners to discuss details of each item they were considering for 
inclusion in the dataset. The constraint of only being able to in-
clude six creatures in the dataset (or, in the later iteration, three 
positive examples and three negative examples) was intended to 
make learners carefully consider and discuss which creatures to 
include. However, it also imposed a “ceiling” for interaction–some 
of the more engaged learner groups wanted to continue improving 
their results, but after a certain point felt they could not be opti-
mized further without expanding their dataset beyond the allotted 
number of spaces. 

Overall, the “messiness” of defning what a bird is seemed to 
be an efective method of encouraging learners to consider the 

challenges involved in developing classifcation algorithms. One 
learner commented that the “nuances” of the bird data is what made 
the activity interesting. We chose birds as the topic of the activity 
both because of the “messiness” of categorizing birds and because 
we thought most learners would be able to draw on their prior 
knowledge when talking about birds. However, some learners were 
not particularly interested in birds as a topic. Recent research has 
found that learners interacting with personal data are able to better 
advocate for themselves in cases of wrongdoing related to machine 
learning [65]. Using personal data in Creature Features in the future 
might be more efective at engaging all learners and help learners 
make deeper connections to AI-related ethical issues. 

One potentially contrasting view on using personal data was 
brought up by Touretzky and Gardner-McCune in a recent book 
chapter preprint [78]. Touretzky and Gardner-McCune hypothesize 
that learners may have an easier time building an understanding of 
machine learning when they are teaching the computer about topics 
they do not have prior knowledge of, since they will be forced to 
consider gaps in the machine’s knowledge that they cannot fll on 
their own. This hypothesis has yet to be empirically tested but does 
fnd some support in participant interactions with Creature Features. 
Since learners had considerable prior knowledge about the topic 
(birds), they often based their decisions of of features drawn from 
their prior knowledge rather than the features listed on the cards. 
This meant that learners were sometimes grounding their decisions 
in data the AI had no conception of (e.g. whether a certain bird lived 
in a participant’s backyard, which birds the participant liked the 
most). If learners had been teaching the exhibit about a totally novel 
topic–e.g. features of imaginary cartoon characters–they would 
have been forced to consider the features on the cards. 

6.4 DP5: Unveil Gradually 
DP5: Unveil Gradually talks about unveiling components of AI 
systems gradually and using scafolding to reduce cognitive load. All 
three of the exhibits involved compartmentalized activities to help 
learners grasp one concept before moving onto the next. Creature 
Features and Knowledge Net had clearly delineated co-construction 
and testing stages, and the LuminAI interface was separated into 
two diferent tabs, encouraging learners to dance with the AI agent 
before moving on and engaging with the MoViz interface. This 
generally worked efectively but at times the gradual unveiling 
of system components may have caused learners to focus on one 
component at the expense of the other. In Knowledge Net, learners 
often spent so long constructing the network that they did not invest 
much time in interacting with the chatbot. In LuminAI, learners 
similarly often danced with the agent for a long time and only had 
a little bit of time remaining to engage with MoViz. 

The MoViz interface could also have used some additional scaf-
folding for learners, perhaps interactively explaining the clusters of 
dance moves. In addition, most learners did not engage much with 
the toggle to try out diferent clustering algorithms, or expressed 
confusion when they did. It could be that this was one feature too 
many to digest in a complex user experience–it should either be 
unveiled gradually with scafolding to support its introduction or 
excluded from the experience to allow learners to focus on the other 
components. 
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6.5 DP7: Milestones 
DP7: Milestones suggests the importance of considering developmen-
tal milestones when designing AI literacy learning interventions. 
Creature Features was not as engaging for our youngest partic-
ipants (6-7) but was quite engaging for just slightly older kids 
(10-11). Young learners similarly enjoyed dancing with LuminAI 
but were not nearly as interested in MoViz (although most of the 
kids we tested the fnal version of LuminAI with were over 10, 
this observation may need to be verifed in a larger study). These 
fndings suggest that in addition to age-appropriate learning out-
comes (which groups like AI4K12 are currently in the process of 
developing [79]), researchers may need to consider developing a 
set of AI literacy design principles that are specifc to particular 
age bands, investigating what types of activities are most engaging 
for learners of diferent ages. 

6.6 DP10: Support for Parents 
DP10: Support for Parents calls for providing support for parents 
when engaging families in learning about AI. We tried to keep 
technical terms to a minimum in the instructions/exhibit explana-
tions, but occasionally used terms such as “algorithm,” “dataset,” 
and “semantic network” when explaining the activities (we pur-
posefully avoided using the term network to describe the machine 
learning algorithm in later iterations of Creature Features both for 
accuracy and to reduce confusion between a neural network and a 
semantic network). Parents often stumbled over technical terms, 
unsure of how to defne/explain them to their kids and sometimes 
stumbling on their pronunciation or skipping over them entirely 
when reading the instructions aloud. We did not interrogate this 
further during the studies, but technical terms can be intimidating 
and discouraging for novice learners [58]. Providing adequate sup-
port for parents guiding their kids through AI literacy activities 
may involve 1) reducing the use of unnecessary technical language 
as much as possible; 2) providing a glossary of relevant terms with 
explanations and pronunciations that parents can use to aid in ex-
plaining new topics to their kids; and/or 3) pausing to explain new 
terms in a non-condescending way as they come up during the 
activity. 

Sometimes the learning dialogue at the exhibits seemed to in-
dicate that learners had skipped over some of the basics (What 
is AI?) to a more advanced topic (What is a semantic network?). 
This worked fne for groups that had some prior knowledge of AI, 
but some groups appeared to walk away without a clear sense of 
what technologies used AI despite understanding how a semantic 
network worked. We included a page in the instruction packet that 
provided a brief introduction to AI, but many learners skipped over 
it as it was lengthy to read aloud (as many learners would proba-
bly skip over a lengthy sign-based explanation in a museum). In 
contrast, we have previously conducted interactive paper-based 
activities in co-design workshops that have been efective at en-
gaging participants in dialogue about what AI was and what their 
preconceptions about it were [48]. Museums that are considering 
implementing AI related installations may want to ensure they have 
an introductory exhibit or activity similar to the one we provided in 
the worksheet packet in the co-design study. 

Future research is needed that more closely investigates the 
roles that parents and children take on when learning about AI 
and explores the types of scafolding that parents provide for their 
children (c.f. [91]). This work could provide valuable insight into 
how to best support parents in AI literacy learning activities. 

6.7 DP11: Social Interaction 
Both adults and kids commented how much they enjoyed getting 
to do the activity with their families and learn about their family 
members’ perspectives on the topics covered. All three exhibits 
supported collaboration, although the form it took looked diferent at 
each exhibit. Knowledge Net was the most successful at consistently 
supporting both physical and verbal collaboration amongst group 
members of all ages. Creature Features was particularly successful 
in many cases at facilitating “constructive controversy” [16, 38] 
as learners debated which creatures to include and emphasize in 
their datasets. There were a few breakdowns in collaboration that 
occurred when, for example, two kids each developed a hypothesis 
and wanted to test it out at the same time. LuminAI facilitated more 
of a turn-taking style of group work, where one learner actively 
engaged with the system at a time while others looked on and 
discussed together. Our prior research suggests that LuminAI could 
easily facilitate more joint collaboration if installed in a larger space 
with additional interaction stations [49]. 

Research on designing co-creative AI for public spaces suggests 
that facilitating multiple levels of entry is essential for fostering 
collaboration [50]. This issue arose a few times in the exhibit proto-
types. For example, our youngest participants (6-8 years old) often 
quickly lost interest in Creature Features (and we did not test the 
exhibits with even younger kids). This meant that in some cases, 
older children and adults were not able to engage as deeply as 
they wanted to in the exhibit. This issue could lead to even more 
rapid disengagement in a museum setting as families often move 
on to other exhibits when one member gets distracted. Providing 
alternative levels of entry or explicit activities for young learners 
is particularly important at AI education exhibits, which may be 
difcult to grasp for learners under seven who have not yet devel-
oped theory of mind (i.e. our ability to “explain and predict other 
people’s behavior by attributing to them independent mental states, 
such as beliefs and desires”) [26, 86]. We tried to incorporate ex-
plicit activities for younger kids in the second iteration of Creature 
Features, where we assigned the “youngest member of the group” 
to fnd bird and non-bird cards in the deck for the group–however, 
additional activities would likely be needed to sustain interaction 
in a museum space. 

6.8 DP12: Leverage Learners’ Interests 
Allowing learners to incorporate their personal interests (DP12: 
Leverage Learners’ Interests) may have made the exhibits more en-
gaging. The instructions for LuminAI encouraged learners to put on 
their own music as they danced with the agent. Numerous families 
responded to the suggestion and played their favorite songs while 
interacting with the system. Many learners also tried to teach the 
agent dance moves they had learned before. Playing customizable 
music is something that would be more difcult to implement in 
a museum due to royalty fees and the presence of other visitors, 
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but was a nice way to allow learners to incorporate their personal 
interests in the at-home interaction environment. 

Numerous families incorporated their interests into their cre-
ations with Knowledge Net. For example, several groups built net-
works about their own family relationships and interests. However, 
some learners wanted to customize their networks further, asking 
for expanded sets of tiles on diferent topics. Similarly, the topic 
of birds was uninteresting for several kids in particular, who may 
have been more engaged if the classifcation task related to their in-
terests. Providing an increased number of options of tiles could lead 
to improved likelihood that the exhibit will intersect with learners’ 
interests. Both Knowledge Net and Creature Features were designed 
so that they could be easily expanded with add-on card decks or 
tile sets. 

Some learners expressed that they enjoyed the ability to use their 
prior knowledge and build networks and/or discuss creatures using 
information they already knew. We hypothesize that the ability to 
use prior knowledge during the activity made learning about AI less 
intimidating–one learner commented that they liked Knowledge 
Net because they could “make relationships between things they 
already knew.” Bolstering learners’ confdence by allowing them to 
succeed at pulling in prior knowledge and use familiar interfaces 
could enable them to explore activities they may otherwise feel less 
confdent or discouraged in [19, 31]. However, certain aspects of 
the activities connected with broader groups than others. The tiles 
having to do with animals and family members were more widely 
relatable than the tiles focused on musical instruments (e.g. “These 
are musical. I don’t know nothing about music” (G2.3)). 

6.9 DP14: New Perspectives 
DP 14: New Perspectives calls for AI literacy learning interventions 
that expose learners to new perspectives on AI that they may not 
have seen before. We aimed to do this in two ways. First, Knowl-
edge Net was focused on competencies related to cognitive systems, 
which is a subdiscipline of AI that has not received as much at-
tention as machine learning and robotics in recent media or the 
education space [51]. We also aimed to expose learners to creative 
AI via interaction with LuminAI, in an efort to spur them to con-
sider applications of AI that are more open-ended and exploratory 
rather than mechanical or detached [61]. Discussion after the Lumi-
nAI activity yielded interesting family dialogue about whether or 
not computers can be creative. Overall, there is a signifcant space 
for future research related to introducing lesser-known types of AI 
research to the public. We hope that the way in which we adapted 
the LuminAI exhibit to an educational context can provide a model 
for other researchers looking to take similar steps to share their 
projects with the public. 

6.10 DP15: Low barrier to entry 
All three exhibits were successful at facilitating a low barrier of 
entry to learning about AI (DP15: Low Barrier to Entry), and numer-
ous participants expressed that they were surprised that they were 
able to learn about how AI works without having much prior expe-
rience with the topic or being able to code. The embodied modes 
of interaction, abstracted interfaces for teaching and training AI, 
incorporation of topics that built on learners’ prior knowledge, and 

minimization of necessary prerequisite technical knowledge likely 
all contributed to reducing the barrier of entry for participants. We 
did observe a few obstacles to facilitating a low barrier of entry–for 
example, the use of technical domain-specifc vocabulary that learn-
ers may be unfamiliar with or the need to ensure that the mapping 
between abstracted interface and AI algorithm is authentic and 
explicit. 

7 LIMITATIONS AND THREATS TO VALIDITY 
The exhibits we designed did not provide signifcant insight into 
all of the design principles set forth in [51]. We did not focus on 
designing activities where learners could write code to program 
AI (DP6), both because we wanted to investigate what AI concepts 
learners could understand without any prerequisite programming 
knowledge and because numerous existing projects already explore 
how to integrate AI learning activities into programming platforms 
(e.g. [10, 17]). In addition, none of the three exhibits we developed 
focused explicitly on addressing learners’ preconceptions about AI 
or on incorporating learners’ identity, values, or backgrounds as 
key design principles (DP9, DP13). Future work will be needed to 
investigate these AI literacy design principles in more detail. 

The learning talk framework we used to analyze participant 
dialogue provides insight into whether and how groups discussed 
relevant AI literacy competencies at each exhibit. However, it does 
not capture other aspects of social family group learning, such as the 
roles that parents and children take on in the interaction or the types 
of scafolding that parents engage in when explaining concepts to 
their kids. Future work will be needed to investigate these important 
aspects of family group learning. Prior work studying parent-child 
perceptions of agent intelligence [18, 63] and identifying the types 
of scafolding parents engage in and roles parents take on [75, 91] 
can inform future research in this space. 

We made an efort to recruit a diverse population, and the de-
mographic data we collected indicated that many groups did not 
have prior experience with computer programming or developing 
AI. However, selection bias may still infuence the results of this 
study. The sample size was small due to the challenges of recruiting 
participants for a study during COVID-19, and some participants 
may have self-selected for the study due to an existing interest 
in AI or technology. Further studies will need to be conducted to 
determine whether our fndings generalize to a larger population. 

Finally, we had some challenges with missing data (see Table 5), 
both because participants were in charge of recording their own 
data and because of technical challenges with the video recorders 
we used. We provide some more detail on the challenges we faced 
here for context and for other researchers who may be conducting 
similar studies during the pandemic. We did not want participants 
to record data on their own personal devices due to the large fle 
size of 2 hour long video recordings. We also did not want to assume 
a high level of technical literacy amongst participants, so we were 
looking for an easy-to-use camcorder where participants could sim-
ply turn on the camera, adjust its position to record their playspace, 
and hit record. However, due to the commercial popularity and 
camera quality on smartphones, most easy-to-use personal cam-
corder companies have gone out of business. The personal cameras 
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that are currently on the market are geared more towards high-
quality recording for hobbyists or professionals, and are relatively 
expensive and complex to set up. We ended up purchasing several 
used Flip cameras, which are simple personal camcorders with an 
extremely easy-to-use interface. However, Flip went out of business 
in 2011, and we ran into technical challenges due to the age of the 
cameras–two of the cameras consistently died after 15 minutes of 
recording (a problem that did not reveal itself until we deployed 
the cameras). This caused technical difculties for the participants 
(who had to keep switching out the batteries with replacements 
we provided) and caused us to not receive video data from some 
of the groups. For the second iteration of studies, we replaced the 
two faulty Flip cameras with GoPro-like cameras. These worked 
more consistently, but the lack of screen feedback meant that some 
groups thought their camera was recording when in fact it was not. 
Ultimately, we did not fnd an adequate solution for the camera 
issue. Although our policy of redundancy helped ensure that audio 
data was collected for almost all of the groups, two groups who did 
not use the audio recorder correctly still ended up with missing 
data. 

8 CONCLUSION 
In this paper, we present an analysis of participant learning talk 
at three diferent activities designed to encourage learning about 
AI literacy competencies. We examine the dialogue around each 
exhibit, then refect on the implications for the AI literacy design 
principles we previously defned based on a literature review [51]. 
This paper contributes an empirically grounded understanding of 
these design principles in light of the learning talk analysis we 
conducted. This paper can be useful to AI educators, designers of 
tools/interfaces for promoting AI literacy and explainability, and 
researchers seeking to better understand how people learn about 
AI. 
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