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Abstract 
Procedural content generation has been widely used for 
aiding game content designers in the content creation 
process. However, limited work has focused on 
autonomously generating novel physical gestures for non-
player characters. This paper focuses on using creative 
strategies from theater and dance to enable the generation of 
novel movement sequences for characters in 3D game 
environments. We apply the Space component from Laban’s 
Movement Analysis to procedurally improvise movements in 
virtual environments. Our framework outlines a pipeline for 
an improvisational AI that analyzes human movements in 
terms of the geometric properties of Laban’s icosahedron and 
manipulates these projections to generate various alternative 
movements. In this paper, we mainly focus on describing the 
structural design and encoding scheme used in the 
framework. 

Introduction1

Games are a massive and continuously growing industry 
(Hendrikx et al. 2013). This growth, however, creates an 
increasing need for novel game content, which can be time-
consuming and expensive to produce manually (Hendrikx et 
al. 2013). Procedural Content Generation (PCG) can 
provide a solution to this issue. PCG is defined as the 
computer-aided generation of game content that uses a 
random or pseudo-random process to generate different 
gameplay spaces (Pcg.wikidot.com, 2019). PCG reduces the 
burden on game content designers by aiding them in, or in 
some cases even taking over, the content creation process. 
A wide body of research has investigated the developing and 
applying new PCG techniques for game components 
(Hendrikx et al. 2013). There has also been a lot of research 
on creating increasingly natural, expressive and believable 
non-player character (NPC) animations using PCG. The 
NPCs are also becoming increasingly intelligent in their 
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ability to learn from player behavior and understanding of 
game context (Yildirim and Stene 2008). 

An important component of intelligence is autonomy in 
actions (Brooks 1991). While there is some research on 
procedurally generating prespecified gestures for humanoid 
characters (Johansen 2009, Albrecht et al. 2006, Horswill 
2009), little work has been done on generation of novel 
gestures for NPCs (Togelius et al. 2013). Making NPCs 
more autonomous could enable characters to respond to 
novel situations and unexpected inputs in a more natural 
way, creating a more dynamic and engaging game 
environment. Content generators that draw on theories of 
creativity can be used to generate more “coherent, original, 
and creative” content, but this is a space which needs more 
research (Togelius et al. 2013).  

This paper focuses on using creative strategies from 
theater and dance to enable the generation of novel 
movements for characters in 3D game environments. More 
specifically, we apply Laban’s Movement Analysis (LMA) 
(Laban 1970, Laban 1966) to the development of procedural 
movement improvisation techniques in virtual 
environments. This includes applications like procedural 
character animation in games and creativity support tools for 
animators and choreographers. LMA’s structured nature and 
flexible granularity of analysis makes it a robust framework 
for computational purposes. Previous works have employed 
LMA for movement analysis and stylization (e.g.: Dias 
2007, Mentis and Johansson 2013), but we are specifically 
looking at movement generation. The Space component of 
LMA, in particular, lends itself well to reasoning about 
abstract movements in terms of geometry (Sutil 2013) and 
has been largely uninvestigated in the literature on 
computational creativity and procedural animation. 

Our larger research agenda is to develop an AI system that 
can reason about human movements to establish a deeper 



 

 

computational understanding of human behavior. In this 
paper, we take a step towards realizing that goal by 
presenting a theoretical framework for procedural animation 
using the Space component of LMA. We outline a pipeline 
for an improvisational AI that can analyze human 
movements in terms of the geometric properties of Laban’s 
icosahedron and manipulates these properties to direct the 
generation novel alternative movements. This work lays 
ground for an alternative method for reasoning about human 
movements, which can then be applied to real-time 
interaction in games using full-body gestures (e.g. VR or 
motion-capture based games), or even expanding the gesture 
set of a humanoid avatar from a limited set of predefined 
animation clips. 

Related Work 
Over the years, a lot of research has gone into PCG for 
games (Hendrikx et al., 2013, Yildirim and Stene 2008, 
Togelius et al. 2013). Many research efforts have tried to 
simulate components of human behavior--particularly 
gestures--in the past (Shapiro 2011). Some systems focus on 
gesture generation (Johansen 2009), others focus on creating 
movements that are more believable, expressive and natural 
(Chi et al. 2000, Bleiweiss et al. 2010, Miyake 2015). A 
variety of research has taken inspiration from the 
performing arts to impart a style, mood, or personality to a 
movement (Neff and Fiume 2003, 2004, Maraffi and Jhala 
2011, P. Salaris, N. Abe, and J. Laumond 2017, Ribeiro and 
Paiva 2014).  
 However, the aforementioned research is limited to either 
generating basic movement sequences (e.g. running, 
jumping) or tuning of animation to improve the believability 
and expression. Few works focus on the generation of novel 
gestures. There is a big gap in the literature in terms of 
improving the variety in a character’s action repertoire to 
enhance the autonomy of humanoid characters in games 
(Yildirim and Stene 2008). Applying research on creativity 
and/or theories from creative domains is one approach to 
improving the creativity of procedurally generated content 
(Togelius et al. 2013). This is the research direction we 
explore in this paper via the application of Laban’s 
Movement Analysis to procedural animation.  

Some previous works have looked at frameworks like 
Viewpoints (Jacob et.al 2013) for analyzing human 
movements computationally. LMA, too, has been used 
extensively but most of the works have focused exclusively 
on Laban’s Efforts (i.e. qualitative parameters of movement 
like slow or heavy) (e.g.: Dias 2007, Mentis and Johansson 
2013). The Space component of LMA--which focuses on 
how people orient themselves and interact with the space--
has been extensively analyzed in the performing arts (Laban 
1970, Burton et al. 2016, Forsythe 2004). Other disciplines 

have explored how Space can be applied in various areas 
like movement inspiration (Bertol 2016), architecture 
(Vroman et al. 2012), and pedagogy (Block 1998). 
However, Space remains largely unexplored for 
computational movement analysis and generation. (Sutil 
2013) argues that by viewing movements in terms of 
geometry, discrete units of space can be rearranged to 
illuminate semantics. It is to this end that we propose a 
theoretical framework that will allow computers to reason 
about human movements in terms of spatial interactions and 
generate creative movements using improvisation 
techniques. 

Laban’s Movement Analysis  
Rudolf Laban was a Hungarian dancer and choreographer 
who developed a popular framework for analyzing human 
movements called Laban’s Movement Analysis. His works, 
later extended by practitioners like Lisa Ullmann, Irmgard 
Bartenieff, and others, present an in-depth analysis of the 
four paradigms that make up a movement. Body refers to the 
agent that carries the movement out, Space refers to the 
surrounding environment, and the body’s interaction with it. 
Effort represents the intrinsic quality of a movement 
(sudden, sustained, light, heavy, etc.) and Shape refers to the 
resulting form that the movement takes as a result of the 
interaction of Body in Space while embodying Efforts. 
 The LMA framework, while originating from classical 
dance studies, is broad enough to accommodate all human 
movements--even the ones we consider very task-specific 
(e.g. extending a hand to help someone). It focuses on both 
extrinsic (e.g. shape, spatial interactions) and intrinsic (e.g. 
heaviness, suddenness, flow) qualities of movements, which 
collectively communicate the underlying psyche of the 
performer. The structured, well-defined movement 
components make LMA well-suited for translation of 
complex human movements into constructs that can be 
leveraged by an AI system (explained further in section 1).  

Laban’s Space Component 
A lot of research has gone into reifying LMA’s Efforts into 
mathematical and physiological measures (Dias 2007, 
Mentis and Johansson 2013, Fdili Alaoui et al. 2017). Space, 
on the other hand, remains largely unexplored from the 
perspective of computational adaptation. Laban describes 
three kinds of spaces. General Space refers to the space 
available for movement. It could be a stage area, or game 
scene. Personal Space refers to the space that can be 
immediately reached by extending one’s limbs. Laban 
defines this as the kinesphere (the sphere of reachability). 
Interpersonal Space is the dynamic space that results from 
interaction between different people in a given space.  



 

 

 Laban observed that classical ballet trains dancers to 
explore limb movements mostly in dominant directions 
(front, sides and back) (Clark and Ando 2014). He 
introduced alternative spatial structures to help the dancers 
explore other possibilities. These spatial structures include 
five platonic solids shapes--cube, tetrahedron, octahedron, 
icosahedron, and dodecahedron. Directing movement 
towards the vertices of these shapes can help dancers create 
dynamic, decentralized gestures (Clark and Ando 2014). 
 Out of the five platonic solid shapes, the icosahedron 
accommodates the proportions of the human body most 
accurately (Bertol 2016). The close correspondence 
between the icosahedron angles and the maximum angles 
through which our limbs move allows for a close mapping 
between its structure and the movement ability of the human 
body. (Bertol 2016) explains how the icosahedron acts as a 
reference system for a dancer’s body to assume different 
postures by aligning the anatomy to different geometrical 
components. From a computational perspective too, the high 
cardinality of the icosahedron allows for a higher number of 
reference points (vertices, edges, planes etc.), which allows 
for a more granular movement mapping and control for 
procedural animation. Further, being the largest of the five 
solids, an icosahedron allows for larger bodily movements 
reaching out to the kinesphere and beyond. This contrasts 
with the dodecahedron, which promotes smaller, inward 
movements with a stable quality (Clark and Ando 2014). 

Moving in Space: Laban-inspired Framework 
for Procedural Animation 

We propose a theoretical framework design for an AI to 
computationally understand human movements in terms of 
Laban’s icosahedron-shaped kinesphere. We also outline an 
improvisation engine that will use our icosahedron-based 
framework to generate novel movement sequences. We’d 
like to point out that this framework is a work-in-progress 
in terms of implementation.  
 Our proposed improvisation engine has three main 
components: the movement analyzer, the gesture improviser 
and the movement synthesizer. In this paper, we describe the 
first component in detail, introducing the structural design 
and encoding scheme of the framework. We supplement the 
explanation of each component with examples of how it 
would be applied in a fictional use case. The use case is 
described as follows: An animator is working with a 
creativity support tool (built based on the framework 
presented here) that helps them to both generate new ideas 
for animation and create characters that are capable of 
improvising novel gestures in response to game scenarios. 
The animator is currently working on creating animations 
for a character that is required to react to a sudden, 
frightening incident. The animator has designed an initial 

movement sequence in which the character’s avatar throws 
his hands in the air and jumps. 

1. Movement Analyzer  
The movement analyzer captures a human’s movements and 
projects them onto a virtual icosahedron to define the 
movements in terms of its geometric parameters. The input 
movement sequence could come from a motion capture 
system (if using a player’s movements) or could be derived 
from the base animation clip (as in our case, the character 
throwing his hands in the air and jumping). 
 The input movement sequence is broken down into small 
individual gestures. Prior research in computational 
movement improvisation has used indicators such as shifts 
in rhythm and stillness as the basis for gesture segmentation 
(Mikhail et al., 2014). An alternative segmentation strategy 
could be based on joint groupings. In our use case, we can 
break down the action into two main components- the 
throwing of the hands in the air and jumping action of the 
legs. This strategy allows us to consider actions at varying 
degrees of granularity, even treating each limb as an 
individual group of joints. 

 
Figure 1: Icosahedron circumscribing the character 

The segmented gestures are then projected onto icosahedron 
scaffolding that circumscribes the character’s body as 
shown in Fig 1. This projection allows the system to define 
the gestures in terms of the geometric parameters of the 
scaffolding. We have begun to explore this aspect of the 
framework through the development of a Unity 3D based 
tool (Fig 2). 

 
Figure 2: Unity-3D based tool for mapping a character’s 

movements to the icosahedron. 



 

 

1.1 Structure of icosahedron-scaffolding 
The icosahedron shaped scaffolding is aligned with the 
character’s body as shown in Fig 3. It is characterized by the 
12 vertices, 30 edges and 30 planes of the icosahedron. 
These components serve as major control points in the 
structure, as explained in section 1.2. Apart from the 
vertices, any point lying on the surface of the icosahedron 
can be understood in terms of its relative placement to an 
edge or a plane. A point on an edge can be defined in terms 
of the ratio in which it divides the edge. A point on a plane 
can be defined using the perpendiculars from that point onto 
the edges of the plane.  

 
Figure 3: Icosahedron with names of vertices and edges 

1.1.1 Icosahedron zones and sections 

 
Figure 4: Dimensional cross and planes  

Laban’s dimensional cross defines three major directions of 
movement--vertical (up and down), horizontal (sideways) 
and sagittal (forward and backward) (Laban 1966). It can be 
seen as a 3D Cartesian space with its origin centered at the 
center of gravity of the character inside the icosahedron. 
However, a human body’s frame is more rectangular rather 
than a single line, which expands these directions into 
orthogonal planes. Laban calls the horizontal the Table 
plane, the vertical the Door plane and the sagittal the Wheel 
plane (Laban 1966) (Fig 4). In our framework, we use these 
planes as cross-sections to divide the icosahedron into three 
zones, parallel to each plane. The Table plane divides the 
icosahedron into the High, Medium and Low zones, the 
Door plane divides the icosahedron into the Front, Middle 
and Back zones and the Wheel plane divides the icosahedron 
into Left, Middle and Right zones. Collectively, these zones 
break the icosahedron into 27 sections, as shown in Fig 5. 

 
Figure 5: Different zones of icosahedron 

1.2 Movement Encoding 
We introduce different schemes to encode the movements in 
terms of the icosahedron components in this section. Each 
icosahedron section (as described in 1.1.1) can be annotated 
with a letter. The location of a limb can, thus, be defined as 
a combination of three letters representing horizontal-
vertical-sagittal sections. We have High (H), Medium(M) 
and Low(L); Left(L), Middle(M), and Right(R); and 
Front(F), Middle(M) and Back(B). The position of a joint at 
any point in time can be in one of the 27 sections. We 
introduce a term Thick Encoding to define this scheme of 
encoding gestures based on the icosahedron section. Thick 
encoding can be useful in identifying a general area in which 
a limb or a joint is located while performing a gesture. For 
instance, the head of the character in Fig. 3 is in the section 
H-M-M and if the character bends forward the head would 
be in the section M-M-F. In our use case we are considering, 
the arms of the frightened character in the final pose would 
be located in the H-L-M and H-R-M sections (Fig. 6). 

 
Figure 6: Arms of the character in our use case 

We also introduce an alternative scheme, called Thin 
encoding, in which the location of a limb or a joint is 
approximated to the nearest plane, edge or vertex according 
to the following rules (Fig 7):  
• Vertex approximation: When a limb is projected onto the 

icosahedron, it is said to point a vertex V if the projection 
is at a distance <= a from V. Here, the magnitude of a 
determines how good the approximation is. 

• Edge approximation: When a limb is projected onto the 
icosahedron such that it cannot be approximated to a 
vertex, it is approximated to an edge E, if the 
perpendicular distance of the projection from the edge E 
is <=b. 

• Plane approximation: When a limb is projected to an 
icosahedron such that it cannot be approximated to a 
vertex or an edge, then it is approximated to a plane P if 
the projection lies within the plane bounds of plane P. 



 

 

 
Figure 7: Thin encoding scheme for icosahedron components 

In terms of thin encoding, the character in our use case, the 
character’s arms would point to the edge 0-3 and 0-5 (Fig 
3). 
1.3 Human Body Restrictions 
In order to ensure that the character obeys the natural 
restrictions of a human body, we define two concepts: 
• Unreachable components are the components that cannot 

be reached by the human body from a given posture or 
stance. Consider the character in Fig 8. From its current 
stance, it cannot reach the I_5 with its right arm. It would 
need to twist the torso in order to reach it. This, however, 
depend on the flexibility of the character being animated. 
Our framework can accommodate differences in the 
bodily flexibility of characters by adjusting the 
definitions of unreachable components.   

 
Figure 8: An unreachable component for character’s right hand 

• Untraceable paths: In some cases, a component may be 
reachable, but certain paths to reach it may not be viable. 
For example, consider a character with its right hand 
pointing to I_3 (as shown in Fig 9). In order to reach I_5 
(a reachable component), one path that exists is I_3 → 
I_4 → I_5, which would require the right arm to traverse 
a physically anomalous path. Such non-viable paths are 
called untraceable paths. A better alternative is to travel 
the path I_3 → I_0 → I_5. As in the case of unreachable 
components, the definition of untraceable paths depends 
on the stance of the character, and the nature and extent 
of its flexibility. 

 
Figure 9: An untraceable path and an alternative traceable path 

 Adding unreachable components and untraceable paths 
ensures that the framework respects the natural limitations 
of a character’s body. At the same time, if a character has an 
extensive movement profile, it may be difficult to define all 
of the untraceable components and paths for each possible 
stance that the character can take. One way to simplify this 
is to use the parent-child relationships derived from 
hierarchy of joints to define the natural restrictions on a 
joint, as well as propagate that restriction to all of the 
children of that joint. 

2. Gesture Improviser 
After translating the gesture segments into icosahedron 
components, the system would generate variations of these 
projections. The gesture improvisor can be programmed to 
use different transformation strategies to generate these 
variations. Based on our thick and thin encoding scheme, we 
introduce two classes of transformations. A thick 
transformation involves transformation at the section level. 
For example, an arm in section H-R-M can be mirrored 
along the Wheel plane to point to an element in the H-L-M 
section. A thin transformation involves transformations at 
individual component level. This provides more granular 
control of the limbs. If, in thin transformation, the type of 
input and output components are the same (e.g. both are 
vertices), we define it as uniform thin transformation; if they 
are different (e.g. the input is a vertex but output is an edge), 
we define it as non-uniform thin transformation. 
 In our use case, since the character is jumping, its torso 
would move from section M-M-M to H-M-M. One example 
of a transformation would be moving the torso from M-M-
M to L-M-M instead. This could correspond to an action of 
ducking--as opposed to jumping--when faced with a 
frightening situation. Using these transformations, the 
system can present the animator with several possible 
variations of the base animation. Further research is needed 
into how variations in gestures can lead to a more dynamic 
experience for players and users.  
2.1 Memorizing the improvised gestures 
The appropriate movement variations that the animator 
chooses would then be stored by the system for future 
reference. The next time a player reaches the point in the 
game where the character throws its arms in the air and 
jumps, the system could select one of the variations 
generated by the improviser, leading to a different 
experience for the player. Alternatively, the improvised 
gestures for ‘reacting to a sudden, frightening situation’ can 
be applied to other characters in the game as well, which can 
further reduce animators’ efforts. 

3. Movement Synthesizer 
The movement synthesizer is responsible for converting the 
improvised icosahedron projections back to a character’s 



 

 

movements. It takes in the information about an icosahedron 
projection and how character’s body should be oriented and 
constructs an improvised movement sequence for the 
animated character. After converting back, the individual 
gestures, the system stitches them together to form a 
cohesive movement response movement. 
3.1 Tuning the ‘style’ 
While our proposed framework currently focuses only on 
the generation of basic skeletal gesture sequences, the 
resulting movements could be subjected to further 
processing to apply certain ‘style’ (i.e. a set of 
characteristics) or personality to the movement. One can 
find multiple ways in the literature to achieve this (Johansen 
2009, Chi et al. 2000, Bleiweiss et al. 2010, Miyake 2015, 
Neff and Fiume 2003, etc.). It can also be used to verify how 
context appropriate the generated movement is. For 
instance, if our system produces a variation in which the 
character’s arms are pointing sideways to I_1 and I_2, an 
auxiliary system (e.g.: Castellano et. al. 2007) may point out 
that this variation does not quite express ‘fear’. This can 
further assist an animator in choosing more context 
appropriate improvisations. 

Conclusion and Future Work 
In this paper, we introduced a framework that can be utilized 
by an AI to procedurally generate novel movement 
sequences for a character in 3D game environments. Our 
work uses Laban’s Space component and outlines a pipeline 
for an improvisational AI agent that can capture human 
movements and project them onto a virtual icosahedron to 
analyze them in terms of the geometric properties of the 
icosahedron. The agent can manipulate the projections to 
generate various alternatives for which new movement 
sequences for the character could be generated. In the paper, 
we describe the structural design and the encoding schemes 
for the framework in detail. 
 There are a number of directions we are considering for 
future research. First, we plan on fully implementing the 
framework in an AI system (implementation is currently a 
work-in-progress) which will allow for a thorough 
evaluation of the quality, creativity and context 
appropriateness of generated gestures. Second, the 
framework can be extended to include the other four 
platonic solids from Laban. This can improve the novelty of 
generated gestures, just as it boosts a dancer’s creative 
movement profile. Third, in a multi-actor scene, we can 
observe each individual’s kinesphere to analyze the overall 
interpersonal engagement. This can be useful in 
understanding, as well as creating, more dynamic social 
interactions within the game. It can also be used as a tool by 
the digital choreographers for creating interesting 
choreographic patterns. Future research could also borrow 

the exploration of general space from (Camurri et al. 2000) 
for improvising movements in different parts of the ‘stage’ 
or scene. 
 In this paper, we take our first step towards providing a 
computational system with an alternative way to reason 
about movements--i.e. by understanding them in terms of 
space. This deepens the system’s understanding of human 
behavior and allows agents to draw on improvisational 
dance theory to dynamically generate simulated human 
behavior in novel situations. 
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