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ABSTRACT

Computers that are able to collaboratively improvise movement
with humans could have an impact on a variety of application
domains, ranging from improving procedural animation in game
environments to fostering human-computer co-creativity. Enabling
real-time movement improvisation requires equipping computers
with strategies for learning and understanding movement. Most
existing research focuses on gesture classification, which does not
facilitate the learning of new gestures, thereby limiting the creative
capacity of computers. In this paper, we explore how to develop a
gesture clustering pipeline that facilitates reasoning about arbitrary
novel movements in real-time. We describe the implementation
of this pipeline within the context of LuminAlI a system in which
humans can collaboratively improvise movements together with
an Al agent. A preliminary evaluation indicates that our pipeline
is capable of efficiently clustering similar gestures together, but
further work is necessary to fully assess the pipeline’s ability to
meaningfully cluster complex movements.
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1 INTRODUCTION

Humans collaboratively improvise movement in situations ranging
from dance performances to pretend play to sports games. Comput-
ers with the ability to participate in these collaborative movement
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improvisations could have an impact on a variety of application
domains, including improving naturalistic procedural animation in
game environments [3], fostering human creativity in gesture-based
domains like dance or theater [8, 9], and creating more engaging
contexts for physical therapy and training [5].

One particular domain that has made advances in understand-
ing embodied human-computer improvisation is the study of co-
creative Al agents. A variety of recent research investigates how
humans and computers may be able to create together in gesture-
based domains including co-creative dance [9] and collaborative
movement improvisation [8]. However, an obstacle that is pervasive
throughout these projects is that humans and their Al collaborators
bring significantly different sets of experiences to the co-creative
interaction. Humans possess a vast amount of real-world knowl-
edge, in contrast to Al agents, which draw their knowledge from
comparatively small datasets. This contrast creates an imbalance
during a co-creative interaction, since the humans are required to
give more than they receive.

Unfortunately, many embodied creative domains like dance, pre-
tend play, and theater are notable for their lack of large-scale, di-
verse, annotated datasets since motion-capture data can be time-
consuming and expensive to collect. Agents capable of lifelong
learning (c.f. [12]) are particularly well-suited for embodied creative
domains since they can learn interactively from human collabora-
tors without supervision. However, the agent needs some way of
reasoning about newly learned gestures in order to respond intel-
ligently to its human partner. One intuitive way to reason about
gestures is based on their similarity, a technique that is frequently
used in improvisation in a variety of domains, such as theater and
jazz [11]. Discerning gesture similarity in movement improvisation
requires the ability to both cluster gestures based on different met-
rics on-the-fly and identification of which cluster a gesture belongs
to in real-time.

Most existing research on gesture understanding focuses on
gesture classification (i.e. identifying and categorizing different clips
of human motion) (e.g. [6]). However, this is not particularly useful
for lifelong learning in creative domains, since human collaborators
can perform a seemingly infinite number of novel gestures while
classification systems try to label these gestures according to only a
finite number of known categories. As a result, new gestures will not
be incorporated into the agent’s knowledge base, making it difficult
for the agent to learn-through-interaction and thereby limiting its
long-term ability to contribute to creative collaborations.

In contrast, a system capable of unsupervised gesture cluster-
ing would be able to learn novel gesture types. Such a system
could compare novel gestures to previously seen gestures and add
new gestures to existing clusters, learning through interaction. An
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unsupervised gesture clustering system could also dynamically
respond to novel gestures by drawing on past experiences and
finding a similar gesture it has seen before without needing a pre-
programmed label (in effect, creating its own knowledge of gesture
categories rather than relying on pre-programmed knowledge).
Systems capable of gesture clustering also have the potential to
be domain-independent, whereas existing classification algorithms
can often only classify gestures based on a very domain-specific
set of categories.

There is some existing literature on unsupervised gesture cluster-
ing, though it is focused primarily on only hand gestures [2, 14, 15].
Work is still needed to understand how to approach unsupervised
gesture clustering with a full-body skeleton, which differs signifi-
cantly from hand motion both anatomically and in terms of gesture
duration (i.e. hand gestures tend to be shorter in length with less
freedom of movement than full-body gestures).

In this paper, we investigate the following central research ques-
tion: How can we implement a co-creative agent that can cluster
arbitrary full-body motion data in real-time, thereby enabling the
agent to draw on a breadth of learned experiences when responding
to its human collaborator? In the rest of the paper, we look at other
related work in this area, discuss a particular use case for which
we designed our clustering pipeline, detail the implementation of
the pipeline, and discuss a preliminary evaluation of our pipeline,
ending with conclusions and plans for future work.

2 RELATED WORK

2.1 Gesture Clustering Based on Skeletal
Similarity

There is some existing research that has explored how to cluster

gestures based on skeletal similarity. There is also some classifica-

tion work that can inform our research on unsupervised gesture

clustering. In this section we will highlight key takeaways from

the existing work in this space.

The limited existing work on gesture clustering primarily uses
k-means [16] as a clustering algorithm. Balci et al. use k-means to
cluster individual poses/frames of human motion [1]. O’Hara et
al. also use k-means to cluster video clips of human motion [10].
There are a variety of different motivations for using k-means for
gesture clustering, including its computational efficiency [16].

One of the challenges with motion capture data is its high di-
mensionality, which can make running a clustering algorithm like
k-means on unprocessed data intractable in terms of run-time (see
Challenges for more detail) and prone to overfitting. Several exist-
ing projects use Principal Components Analysis (PCA) as a method
for dimensionality reduction, suggesting that it is a suitable candi-
date for datatypes depicting human motion. Srivastava et al. apply
PCA to video clips of human hand gestures as a pre-processing step
for a classification algorithm [14]. Balci et al. also use PCA in an
application that clusters motion poses [1].

Other techniques for dimensionality reduction have been ex-
plored in the literature as well. Kim et al. extract key joints from
gestures as a way of reducing dimensionality, focusing on joints
that have more impact on the visual appearance of the dance mo-
tion [6]. Yang et al. also propose a novel approach to reducing the
dimensionality of large frame-based representations of the human
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body [17]. Their approach, called temporal clustering, takes a ges-
ture of some number of frames and from them identifies a subset
of frames, much less than the original, which well-approximate the
gesture. We draw on these two approaches as well as PCA in the
implementation of our pipeline.

While there is a variety of existing work that suggests useful
strategies for clustering arbitrary motion data, none of them directly
answer our research question. Kim et al. propose a pipeline for
classifying Korean Pop style dance gestures, but as a result of being
a classification and not a clustering pipeline, many aspects of their
implementation rely on labeled data in order to function, which is
not feasible in applications that require lifelong learning [6].

Balci et al. suggest an approach for reducing the dimensionality
of the human skeleton that takes the average, or “centroid”, of
several joint positions of a limb in a skeleton and then attempts
to cluster that processed data [1]. However, their chosen input
data is not continuous and consists instead of still poses taken
from a single recorded gesture. Our work attempts to cluster entire
gestures rather than individual poses or still frames.

Finally, O’'Hara et al. attempt to pre-process and cluster data
recorded from various parts of the body such as the face or the
hands, including full-body motions [10]. However, the algorithms
used in their approach, namely Product Manifolds and Bag of Fea-
tures, were designed explicility for video data and thus do not
capture well the unique characteristics of motion capture data.

2.2 Non-skeletal Similarity Metrics

The previously discussed work is all heavily focused on under-
standing gestures in relation to the position of joints in the human
skeleton. There is also research looking into how to compare ges-
tures based on non-skeletal measures, such as Laban movement
analysis [7], which is a framework created by dancer/choreographer
Rudolf Laban that characterizes movement based on four different
paradigms—-Body, Space, Effort, and Shape. Effort (i.e. the intrinsic
quality of a movement) is the element of this framework that has
been explored the most by practitioners and researchers work-
ing in computational movement science. Existing research largely
concerns itself with analyzing movements to discern the four pa-
rameters of Effort—Time, Weight, Space and Flow. This includes work
focused on identifying parameters from features such as velocity,
acceleration, joint position/orientation, and muscle tension and
classifying movements accordingly (e.g. [4]). This is a different ap-
proach to understanding what defines two “similar” gestures. We
seek to develop a pipeline for gesture clustering that can accommo-
date both skeletal similarity and other metrics of similarity, such as
the metrics identified in the Laban effort system.

3 LUMINAI

LuminAlI is an interactive art installation in which humans can
collaboratively improvise movement with a virtual dance partner
[9]. A Microsoft Kinect 2.0 depth sensor is used to detect the human
participant’s motion, which is visualized as a virtual “shadow” on a
projection screen. Next to the shadow is a humanoid “agent”, which
dances by analyzing the participant’s movement and responding
with a movement that it deems to be similar in terms of parameters
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such as energy, tempo, or size (adapted from Viewpoints move-
ment theory [9]). The agent interactively learns gestures from the
participant as they dance together.

We used LuminAlI as a context for developing an unsupervised
gesture clustering pipeline because, while LuminAI is capable of
lifelong learning, it simply remembers every gesture that it recog-
nizes, and does not cluster gestures based on similarity. The current
version of LuminAI can calculate certain similarity metrics between
gestures (e.g. whether two gestures have the same tempo) using
mathematical heuristics developed based on Viewpoints movement
theory [9], but the current system is not capable of comparing
gestures using other parameters such as visual similarity or other
movement theories such as Laban movement analysis [7]. A ges-
ture clustering pipeline would enable LuminAI to respond more
intelligently to its human collaborators’ dance moves.

4 CHALLENGES

There were three main difficulties we encountered when trying to
develop a pipeline that could cluster motion capture data during
real-time participant interactions with LuminAI:

Defining Meaningful Similarity: The first challenge stems from
the disconnect between quantitative similarity measures and how
human beings perceive motion. A clustering pipeline that allows
for meaningful co-creative experiences must present users with
clusters that are not only quantitatively similar, but also visually
and intuitively understandable . The challenge of defining what con-
stitutes meaningful similarity is compounded by the many metrics
that human beings use to interpret similarity (e.g. skeletal similarity
vs. the Laban metrics discussed in Related Work). A similarity-based
gesture clustering algorithm should be able to accommodate differ-
ent similarity metrics depending on the context.

Need for Dimensionality Reduction: The second challenge we en-
countered when developing our gesture clustering pipeline was
that conventionally recorded motion capture data using a frames-
per-second approach caused the complexity of a motion to grow
in polynomial time. In the LuminAI setup, the growth scaled with
the number of features per frame by the total number of frames,
scaled once more by the total number of motions in the knowledge-
base. This more or less requires us to implement a pre-processing
approach (which reduces the efficacy of use in real-time improvisa-
tion) or dimensionality-reduction to make the clustering tractable at
larger motion-library sizes. In addition, data that is too high dimen-
sional, like motion capture data, is extremely prone to overfitting
and would adversely affect the accuracy of our clustering.

Real-Time Response: The third challenge we faced is that the
dimensionality reduction steps must be efficient enough to run
in real-time so that the pre-processing of novel gestures does not
interfere with the system’s response time.

5 IMPLEMENTATION

The aforementioned challenges and related work [1, 6, 14, 17] in-
formed our development of a three-stage pipeline for unsupervised
gesture clustering of arbitrary full-body motion data. In this section,
we provide an overview of the pipeline architecture, followed by a
more detailed description of each stage in the pipeline.
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Figure 1: Flow-chart of the real-time operation pipeline.
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Figure 2: Flow-chart of the training pipeline.

5.1 Overview of Pipeline

Our proposed pipeline consists of two similar implementations, one
for real-time operation (Fig. 1) and one for training (Fig. 2). The
training component consists of three main parts: the pre-processing
dimensionality reduction steps, the clustering and model fitting
steps, and the export of a trained k-means model [16] with a fitted
PCA transform model [13]. The pre-processing step reduces the
dimensionality of motion data considerably using temporal clus-
tering [17], then reduces dimensionality even further using a joint
angle extraction technique [6]. Once this is applied to every item
in the motion library, the data is then used in the model-fitting and
clustering step, in which a PCA model is first fitted on the reduced
motion library.

Once the PCA transform model is obtained, the dimensionality of
the data is further reduced using the PCA model. Finally, the newly
transformed data is clustered using a k-means model. The products
of the model-fitting and clustering step are a PCA transform model,
which can be used to apply PCA to novel data items, and a k-means
model, which contains the clustering of the pre-processed motion
library and can be used to place novel gestures in their appropriate
clusters. In the final stage of the pipeline, these two models are
exported for future use.

The pipeline running in real-time uses the pre-trained PCA trans-
form model and k-means model and consists of three steps: motion
recording, motion pre-processing, and motion clustering. In the first
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step, a participant is prompted to record themselves performing a
gesture using the Microsoft Kinect 2.0 depth sensor. In the motion
pre-processing step, the dimensionality of the novel gesture is re-
duced using temporal clustering, angle extraction, and the fitted
PCA transform model. In the final step, the transformed gesture
is placed into an appropriate cluster by the fitted k-means model.
A gesture randomly selected from the target cluster of the novel
gesture will be played back to the user (this step is specific to the
LuminAI use case, in which we want the agent to respond with a
gesture that is similar to the participant’s gesture).

We decided to focus heavily on the principle of maximizing
variance between different gestures when designing our pipeline.
Temporal clustering, PCA, and k-means were chosen as a starting
point from pre-existing papers [1, 6, 14, 17] specifically due to the
way that all three incorporate elements of variance maximization
in their design. In the remainder of this section, we will describe
the implementation of each stage of the pipeline in more detail.

5.2 Input Data

The input data for the pipeline can consist of any feature vector
where the geometric distance between any two feature vectors
is a quantitative measure of the dissimilarity between them. This
means that the pipeline can cluster gestures based on a feature
vector consisting of joints-based skeletal data or a feature vector
of other movement qualities such as Time, Weight, Space, or Flow
[7]. We focus on joints-based skeletal data in this paper, but plan to
incorporate Laban feature vectors in future work as an alternative
way of understanding meaningful similarity between gestures.

The joints-based input data for the pipeline consists of gestures
gathered using the Microsoft Kinect depth sensor—although this
pipeline could be adapted to accommodate other motion capture
devices such as a motion capture suit. The dimensionality of a
single gesture recorded from the Kinect is Q x J x F, where Q is the
dimensionality of the geometric information associated with each
joint, J is the number of joints in a Kinect skeleton, and F is the
number of frames in a gesture.

Positional and Rotational Data: Q is the dimensionality of the
geometric information associated with each joint. The Kinect can
record either the rotation of a joint or its position. In our implemen-
tation, we recorded the data using Cartesian coordinates, making
the dimensionlity of Q three.

Joints: J is the number of joints in a Kinect skeleton. A single
frame in a Kinect-recorded gesture consists of an abstract skeletal
representation with a pose and orientation that approximates the
human pose. The Kinect does this by identifying the “joints” on a
human user, such as the knee or the elbow, and where they are in
R3 space. As a result, the “skeleton” is composed of a set number
of joints J. Joints in this skeleton follow a tree structure so as to
emulate a human’s physiological makeup. A hand is the child of an
elbow, which in turn is the child of the shoulder.

Frames: F is the number of frames in a gesture, which can be
considered “still frames” of movement that approximate its kinetic
and spatial qualities. Strung together quickly enough, frames can
emulate continuous motion. The Kinect sensor captures movements
at 24 FPS (frames-per-second).
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5.3 Temporal Clustering

The size of F can easily grow into the hundreds with longer gestures,
making a reduction in the number of frames necessary in order
to facilitate real-time data processing. The objective of temporal
clustering [17] is to find a user-specified number of “keyframes” that
best approximate the input motion. Temporal clustering achieves
this by expressing the problem of finding representative “keyframes”
as optimizing the placements of consecutive contiguous partitions.
Each partition is evaluated using a measure described in Yang et al.
as the “within-segment sum of squared error” which quantifies how
“different” the frames in each partition are from the partition’s mean
frame [17]. This creates partitions consisting of frames that are as
similar to one another as possible, thus indirectly maximizing the
difference or variance between one partition and all other partitions.
In order to make this approach computationally tractable, Fisher’s
optimal partition algorithm [6], a dynamic programming approach,
is used to identify these partitions, and an average of all the frames
in one partition is used to produce a “keyframe” 1.

Suppose we are given an gesture that is 300 frames in length. We
can reduce the number of frames in the representation to less than
one twentieth of its original size by setting the number of keyframes
to 15. In addition, the implementation of temporal clustering makes
the pre-processing approach invariant to the length of each input
gesture, as the number of frames output is user-specified as the
keyframe number. This is particularly important for our system
as not all recorded gestures are of equal duration. If we did not
use temporal clustering, we would have to pad shorter gestures
before use with models requiring a uniform input size over all
data points, such as PCA or k-means. This would increase the
average representation size with no information gain. Supposing
that the user has set the desired number of keyframes to f, then the
dimensionality of a single gesture after temporal clustering will be
reducedto Q x J x f.

5.4 Feature Extraction

Certain joints do not contribute as much to the overall represen-
tation of a gesture or dance as much as others do—for example,
shaking your leg will have a larger effect on a gesture than shaking
your foot. The significance of certain joints and their associated
angles in different kinds of dance was noticed by Kim et al. [6]. Kim
et al. achieved remarkable accuracy in their classification model by
extracting the scalar angles created from the positions of important
joints and the positions of their neighboring joints, then discarding
joints that were deemed insignificant [6].

Our implementation borrows from Kim et al.’s technique and ex-
tracts angles in the same way, but because our representation uses
a reduced set of frames and therefore has lower dimensionality,
we are able to keep more joint angles without reducing perfor-
mance. The joints that are deemed significant are selected by the
programmer before the system begins training (this also allows the
joints under consideration to be modified according to a particular
dance style or culture). In our current implementation, the joints

In Yang et al’s original paper on temporal clustering [17], there appears to be an error
in the pseudocode in which the diameter calculation is calculated over all n rather
than all j, j being the iterator for a for loop. Our implementation uses our modified
pseudocode instead of the original.
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that we have kept are the middle spine, left shoulder, left elbow,
right shoulder, right elbow, left hip, left knee, right hip, right knee.
Once the joints have been decided, our pipeline then extracts the
angles of important joints, further reducing dimensionality. We use
Kim et al’s technique of computing the angle of rotation between
the parent joint and the child joint of any “important joint”, thus
producing the vectors from the “important joint” to “parent joint”
and “important joint” to “child joint” [6] . This process is much
like placing any point A in 3D space, placing two other points B
and C in arbitrary locations, and measuring the angle BAC created,
oriented in the plane created by the vectors AB and AC. This step
reduces the dimensionality of a single gesture tojx 1 xf, orj x f,
where j is the number of important joints.

55 PCA

PCA is one of the most widely known approaches to dimensionality
reduction available. It is considered a “standard technique for find-
ing the single best (in the sense of least-square error) subspace of a
given dimension ” [13]. The mathematical principle behind PCA is
the creation of a set of principal components that best express or
explain the linear variance present in the data. A principal compo-
nent is found by creating linear combinations of existing axes, with
the first principal component exhibiting the most variance among
data points, and the second principal component less so, and so on.
In addition to the motivation provided by the experimental suc-
cess of PCA used in gesture-related domains (see Related Work),
we were also inspired to use PCA in our pipeline because its math-
ematical principle is similar to that of temporal clustering, which
also focuses on maximizing variance. The number of principal com-
ponents is programmer-specified. Suppose that it is set to P, then
the dimensionality of a single gesture will be reduced from j x f to
simply P. In addition to producing a transformed lower-dimension
data set, the PCA model will also be fitted to the data set and will
be able to transform novel data points into the same subspace as
the data that was used to train it. This step exports the transformed
data and the fitted model for future use in the clustering pipeline.

5.6 K-means Clustering

K-means belongs to the family of partition based clustering algo-
rithms, whose key principle is the definition and characterization
of a cluster by its “center point”, where the center point of a cluster
is the “average” or the point that minimizes distance between it and
all other points in the cluster [16]. K-means updates the centers
of clusters iteratively until the clusters eventually converge and
each data point is placed into its appropriate cluster [16]. K-means’
biggest advantage is that it is relatively computationally efficient,
but it suffers from several other issues such as requiring a pre-set
number of clusters and being sensitive to outliers [16].

K-means’ usage is nonetheless widespread, and the algorithm
has been shown to work well in gesture-based domains [1, 10].
Balci et al’s use of k-means alongside PCA also indicates that the
two work well together [1]. Due to k-means’ heavy reliance on a
distance metric when comparing data-points, we find it intuitive to
use for a pipeline that maximizes variance. Given N data items of
dimensionality P, the dimensionality of the input is P x N. After k-
means is fitted to this data set, it produces a clustering that assigns
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an index to each data point corresponding to the cluster it belongs
to, and a trained k-means model that is able to predict what cluster
novel data items belong to, provided that the novel data item goes
through the appropriate pre-processing.

6 EVALUATION

We conducted a preliminary evaluation of the three-stage pipeline
for unsupervised gesture clustering of arbitrary full-body motion
data that we developed in order to better understand its ability
to cluster skeletally similar gestures and identify limitations. We
initially set the number of principal components for the PCA model
to two and the number of k-means clusters to three for our evalua-
tion. We initially chose two as the number of dimensions because it
allows for easy visualization and inspection of the data, but with a
downside of a decrease in accuracy. We later changed the number
of k-means clusters from three to four after observing four clear
clusters in the visualization. This section details the findings from
our evaluation which, while preliminary, offer insights that can
inform future research.

6.1 Dataset

We gathered a dataset of 104 unique gestures in order to develop an
initial understanding of how well our pipeline clustered gestures
based on skeletal similarity. Four different members of our lab
danced in front of a Microsoft Kinect sensor placed at waist level
in order to record the gestures. The participants were prompted
to cover a wide variety of motions that each differed greatly from
one another. Participants alternated between isolated motions that
engaged only one body part and whole body dances or motions that
engaged all four limbs. The participants were told not to perform
certain gesture types due to the difficulties the Kinect sensor has
with tracking them, such as motions that involve rotating the body
along the upwards Y axis at rapid speeds (e.g. spinning) or gestures
in which body parts were occluded (e.g. laying on the ground).

We attempted to label each gesture in the dataset according
to a particular body part category (“hands”, “hips”, or “legs”) in
order to determine whether the clusters the pipeline created would
match up with the labels we gave them as a way to measure the
“Intuitiveness” of the clusters generated by our pipeline. Labels were
assigned based on which body parts were primarily being used in
the gesture—for instance, a one handed wave and two handed wave
would both be put under the label of “hands”, whereas a gesture
depicting a walking motion would be put under the label of “legs”.
Unfortunately, it proved difficult to intuitively label some of the
more complex movements involving multiple body parts, so we
ended up only labeling 44 of the 104 gestures (we refer to this as
the reduced dataset in the remainder of the paper, see Future Work
for future plans to improve this evaluation metric).

6.2 Efficiency

6.2.1 Compact Gesture Representation. Our pipeline is able to ap-
proximate gestures at a much lower dimensionality than regular
motion capture data, while enhancing the accuracy of clustering.
Our pipeline can reduce a gesture, which can consist of over 10,000
dimensions, to a two-dimensional vector. This reduced dimension-
ality allows us to visualize and inspect clusters more easily and
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Figure 3: Visualization of the clustering for the full dataset
of 104 gestures. Each color represents a different cluster
identified by the k-means clustering algorithm.

allows us to train models more efficiently. The ability to easily
visualize gesture clusters is particularly important in application
domains where it is important to evaluate the agent’s creative con-
tributions (e.g. computational creativity) and/or help others to learn
about the agent’s reasoning process (e.g. informal learning spaces).
We assessed the efficiency gains that resulted from the more com-
pact gesture representation using using a HP Spectre x360 (2016)
running Ubuntu 18.04.

6.2.2 Real-Time Pre-Processing. One of the driving motivations
behind our pipeline implementation was the need to rapidly add
new data to clusters in order to enable the LuminAI agent to quickly
respond to performed gestures with relevant “similar” gestures. This
means that the pipeline needs to pre-process gestures quickly. We
found that it took a total of 157.6 seconds to pre-process the reduced
dataset of 44 gestures and to train the PCA model. This averages to
3.56 seconds to process one gesture, which is 1-2 seconds longer
than desired but feasible for a real-time application (especially if run
on a more powerful computer and if the code is further optimized
for performance).

6.2.3  Clustering Speed. The gesture dataset will need to be periodi-
cally re-clustered as the agent learns new data. Because gestures are
pre-processed in real-time as data is gathered, clustering speed is im-
proved using our pipeline. The runtime to cluster the full dataset of
104 gestures with no pre-processing was 1.789822 seconds, whereas
the runtime for the data that was pre-processed using our pipeline
was 0.038425 seconds. This speedup would be amplified for larger
datasets.

6.3 Noise Sensitivity

We produced a duplicated gesture for each recorded gesture with a
random amount of Gaussian noise added to one of the body parts
in order to increase the number of total gestures and to test our
pipeline’s resilience to random noise. The amount of noise added
to each body part was calculated by sampling from a Gaussian
distribution with a mean of 0.07 and sigma of 0.02 three times. The
three independent samples are concatenated into a 3D vector and
added to the position of a randomly selected joint, excluding spine
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RIGHT ARM

LEGS AND HIP

HANDS_13, HANDS_18
[ ]

HIPS_6, HIPS_9

BOTH ARMS

HANDS_7, HANDS_17

LEFT ARM

Figure 4: Visualization of the clustering for the reduced, la-
beled dataset of 44 gestures. Each color represents a different
cluster identified by the k-means clustering algorithm.

Cluster # gestures Legs% Hips% Hands %
Both Hands 9 0 11.11 88.88
Right Hand 5 0 0 100

Left Hand 5 0 0 100
Lower Body 25 68 32 0

Table 1: Cluster composition for the reduced dataset of 44
gestures

and hip joints due to the physical limitations of the human body,
for every frame in a gesture. The mean magnitude of the noise
added is 0.1212 and about half the size of the skeleton’s forearm
in our representation. Examination of the cluster visualization of
the reduced dataset with randomized gestures added indicated that
our clustering approach is fairly resistant to the effects of random
noise, as almost all of the randomized gestures are placed into the
same cluster as their parent.

6.4 Cluster Clarity

We visually evaluated our pipeline’s ability to cluster items using
the reduced dataset. Our hypothesis was that the clustering visual-
ization would produce clearly identifiable clusters of the gestures
that correspond to the “hands”, “hips”, and “legs” labels applied to
the reduced dataset. As Fig. 4 shows, the red clustering on the left
(labeled Legs and Hip) is the most obvious due to its density. Three
more distinct clusters can be observed towards the top, bottom and
right hand side of the visualization. The clusters in the full dataset
(Fig. 3) are less visually apparent, but this is to be expected as par-
ticipants were instructed to perform varied gestures, meaning that
not many gestures in the full dataset were similar to one another.
As a point of comparison, all of the gestures except for one outlier
appear to be clustered in a small and very dense clump in the center
of the visualization generated from the results from running only
PCA and k-means on the data without our pipeline pre-processing
(not pictured due to space constraints), indicating that our pipeline
did a better job of separating the gestures into distinct clusters.
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Figure 5: A success case: Double arm oscillation (Hands-13,
top) and waving (Hands-18, bottom) gestures are considered
similar. This example also highlights some understanding
of “rhythm”.

6.5 Cluster Accuracy

We initially hypothesized that we would see three distinct clusters
of gestures in the reduced labeled dataset after pre-processing -
one for “hips”, one for “legs”, and one for “hands”. We actually
found four distinct clusters (see Fig. 4). We evaluated the quality
of these clusters based on how how homogeneous each cluster
was in terms of the labeled gestures it contained (i.e. a cluster
consisting exclusively of “hands” gestures was considered a better
clustering than a cluster consisting of an equal mix of “hands”,
“hips” and “legs”). We found that the clusters on the top (blue) and
bottom (yellow) of the visualization consisted exclusively of “hands”
gestures (see Fig. 4, Table 1). The two clusters correspond to left and
right arm motion, suggesting that our pipeline discretized the two
body parts into their own individual clusters. The cluster on the far
right (pink) also consists of 88% gestures labeled as “hands”. This
cluster appears to be formed from “hands” gestures that involve
both left and right arm motion, explaining its positioning between
the left and right arm clusters. The final cluster is shown on the far
left (red) in Fig. 4 and is the most mixed of all the clusters present,
composed of all of the “legs” and “hips” motions together. The likely
reason behind this is that at the time of recording, we did not realize
that moving ones’ hips almost certainly involves the reorientation
of the legs. In addition, in all the “hips” and “legs” motions, the
performers’ arms were static by their sides, causing the upper bodies
in these gestures to be identical to one another, likely explaining
the density of this cluster. In spite of the unexpected results, we
found that according to our evaluation metric, the clusters created
for the reduced dataset were agreeable.

6.6 Visual Inspection

We conducted a qualitative visual inspection of both the reduced
and the full dataset to supplement our quantitative evaluation of
the reduced dataset clusters. We present several exemplar gesture
comparisons from the reduced dataset here to highlight areas where
the pipeline succeeded and failed. In Figures 5 - 7, gestures are
depicted as a series of keyframes and should be read left to right.
Gestures are presented in pairs for comparison, with one gesture
on the top row and one gesture on the bottom row. Fig. 4 shows the
location of the exemplars we selected within the clustering plot for
the reduced dataset (the exemplars are boxed and labeled in green).

The two gestures pictured in Fig. 5 were placed in the “both
hands” cluster. In the first gesture, the skeleton moves both of its
hands in a circular fashion, engaging its elbows in the motion. This

Figure 6: A success case: two leg motions (Legs-16, top, and
Legs-8, bottom) involving the raising and lowering of the
knee are considered similar despite the addition of lateral
motion in Legs-16 (top).

Figure 7: A failure case. Upper body swaying and lateral
translation (Hips-7, top) is considered similar to a slight
swinging of the hips (Hips-9, bottom).

is visually similar to the second gesture, in which the skeleton
performs a simple wave with both hands. The keyframes shown
also suggest that the system has some understanding of “rhythm”
as the reduced keyframe set clearly depicts the “left arm then right
arm” rhythm of the gestures.

The gestures pictured in Fig. 6 both depict the raising and lower-
ing of the knee-however, the gesture shown at the top adds more
lateral motion to the knee joint. In spite of the difference between
the two, we found their close clustering agreeable due to their
intuitive visual similarity.

The two sets of gesture keyframes pictured in Fig. 7 are an
example of what we consider a failure case. The emphasis in the
gesture shown at the top is clearly the lateral swaying and leaning of
the upper body whereas the gesture on the bottom depicts only the
lateral swinging of hips. This difference is lost because our angle
extraction works only on specific body parts and does not take
into account the rotation of the whole body. As a result, these two
gestures are considered similar due to their close joint orientations.
This effect was observed in several other gesture pairs.

We also noticed that the clustering visualization of the reduced
dataset took on an unexpected emergent property-the placement of
data points in this space allows one to immediately determine which
body part was most active simply by looking at which quartile it
lies in. This is an intriguing property because it suggests that the
system, with no input from the user, has identified the body parts
of the human skeleton that exhibit the most motion variance. It has
learned on its own that limbs are an important part of motion and
clustered data points using them.



MOCO ’19, October 10-12, 2019, Tempe, AZ, USA

6.7 Inherent Limitations of Pipeline

There are several limitations of the pipeline inherent to its imple-
mentation that need to be taken into consideration and may make it
more or less suitable for certain styles of movement improvisation.

6.7.1 Angle Invariance. We extract angles from important joints
using their Cartesian coordinates as part of the pre-processing step
(see Feature Extraction). This step introduces an invariance to the
actual position of the user relative to the Kinect camera, as apply-
ing a transformation to all joints will have no effect on the angle
extracted. A person performing a wave to the left of the camera will
have the same joint angles as a person on the right. Angle extrac-
tion also makes the system blind to the direction a rotating joint
is currently facing. These consequences of angle extraction could
interfere with dance styles or gestures that emphasize translational
movement or the direction of angular movement.

6.7.2 Inability to abstract motions from specific body parts. Each
of the body parts is given a unique position in the feature vector
used to describe a Kinect skeleton. This means that the system
has difficulty equating similar motions mirrored across the Y axis
of the human body. For human users, it is apparent that a hand
waving motion is a “wave” regardless of which arm it is performed
with. However, our system does not view these two to be similar
as it has no preconception of the symmetrical human body, nor the
relationship between the left and right arms.

6.7.3 Change Emphasis. Our pipeline gives equal weight to body
parts that remain static and body parts that are moving from frame-
to-frame, but we noticed during our evaluation that we intuitively
placed a greater weight on moving body parts when comparing
similar gestures. We hypothesize this to be the cause of some of the
failure cases observed in the reduced dataset “legs and hips” cluster.
Due to the similar positions of the upper bodies in the gestures
from that cluster, gestures that are sometimes visually dissimilar
to humans due to movement of an angle, like the hip, are placed
together due to their upper body similarities.

7 FUTURE WORK

We plan investigate how to mitigate some of the limitations of the
pipeline highlighted in the Evaluation section. This will include
technical pipeline efficiency and accuracy improvements as well as
collecting a larger dataset and exploring more rigorous methods
of assessing clustering quality. Further work is necessary to fully
understand the ability of the pipeline to find meaningful clusters
for larger datasets that contain varied gestures that involve the
motion of many body parts at one time. This was challenging to
assess using our preliminary approach to evaluation, both because
we could not visualize clustering visualizations with more than two
dimensions, and because it was difficult for us to come up with
meaningful labels for full-body gestures. In the future, we might ex-
plore how the algorithm performs in relationship to labeled datasets
generated by expert dancers/choreographers who are able to more
accurately label complex movements and/or investigate whether
or not users of the system can discern a difference in gesture re-
sponses generated using our pipeline vs. random responses. In
addition, the gesture clustering pipeline we have built can support
reasoning/clustering along non-skeletal metrics of similarity, such
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as Laban movement analysis [7]. We plan to further explore how
different ways of reasoning about movement can affect co-creative
movement improvisation within the context of LuminAL

8 CONCLUSION

In this paper, we have combined multiple strategies used for gesture
dimensionality reduction [1, 6, 17] with a k-means clustering tech-
nique to develop a pipeline for unsupervised clustering of arbitrary
full-body motion data. We conducted a preliminary evaluation of
our pipeline and found that it is able to efficiently and intuitively
cluster gestures involving the movement of isolated body parts.
The pipeline is resilient to noisy data and produces clear clusters in
response to gestures that are intuitively similar in terms of skeletal
positioning. Our main contribution is the novel combination of
existing strategies for clustering and dimensionality reduction into
a pipeline that can be used in a variety of movement improvisation
domains.
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